In-line resistance thermometer, model TR25
Intrinsically safe designs (Ex i)

Rohr-In-Line-Widerstandsthermometer, Typ TR25
Eigensichere Ausführungen (Ex i)

Options: Sealing combination at neck tube, cable gland in hygienic design
Further languages can be found at www.wika.com.
Contents

1. General information 4
2. Safety 5
3. Specifications 10
4. Design and function 11
5. Transport, packaging and storage 14
6. Commissioning, operation 15
7. Information on mounting and operation in hazardous areas (Europe) 15
8. Additional notes for instruments with EHEDG and 3-A 23
9. Electrical connection values 24
10. Calculation examples for self-heating of the tubular body at the sensor installation point 26
11. Maintenance and cleaning 27
12. Faults 28
13. Dismounting, return and disposal 29

Appendix

- Appendix 1: EU declaration of conformity 30
- Appendix 2: EPL matrix 33

Declarations of conformity can be found online at www.wika.com.
1. General information

The in-line resistance thermometer described in the operating instructions has been manufactured using state-of-the-art technology. All components are subject to stringent quality and environmental criteria during production. Our management systems are certified to ISO 9001 and ISO 14001.

These operating instructions contain important information on handling the instrument. Working safely requires that all safety instructions and work instructions are observed.

Observe the relevant local accident prevention regulations and general safety regulations for the instrument's range of use.

The operating instructions are part of the product and must be kept in the immediate vicinity of the instrument and readily accessible to skilled personnel at any time.

Skilled personnel must have carefully read and understood the operating instructions prior to beginning any work.

The manufacturer's liability is void in the case of any damage caused by using the product contrary to its intended use, non-compliance with these operating instructions, assignment of insufficiently qualified skilled personnel or unauthorised modifications to the instrument.

The general terms and conditions contained in the sales documentation shall apply.

Subject to technical modifications.

Further information:
- Internet address: www.wika.de / www.wika.com
- Relevant data sheet: TE 60.25
- Application consultant: Tel.: +49 9372 132-0
 Fax: +49 9372 132-406
 info@wika.com

Explanation of symbols

WARNING!
... indicates a potentially dangerous situation that can result in serious injury or death, if not avoided.

CAUTION!
... indicates a potentially dangerous situation that can result in light injuries or damage to equipment or the environment, if not avoided.

Information
... points out useful tips, recommendations and information for efficient and trouble-free operation.
1. General information / 2. Safety

DANGER!
... identifies hazards caused by electrical power. Should the safety instructions not be observed, there is a risk of serious or fatal injury.

WARNING!
... indicates a potentially dangerous situation in the hazardous area that can result in serious injury or death, if not avoided.

WARNING!
... indicates a potentially dangerous situation that can result in burns, caused by hot surfaces or liquids, if not avoided.

2. Safety

WARNING!
Before installation, commissioning and operation, ensure that the appropriate thermometer has been selected in terms of design and specific measuring conditions.

Before installation, commissioning and operation, ensure that the thermowell material used is chemically resistant/neutral to the medium being measured and that it withstands the mechanical stresses from the process.

Non-observance can result in serious injury and/or damage to the equipment.

Further important safety instructions can be found in the individual chapters of these operating instructions.

2.1 Intended use
Resistance thermometers for temperature measurement in processes with extremely high hygienic requirements, in hazardous areas. These thermometers are used in applications where a thermowell immersed into the process medium is not possible or not desired.

The instrument has been designed and built solely for the intended use described here, and may only be used accordingly.

The technical specifications contained in these operating instructions must be observed. Improper handling or operation of the instrument outside of its technical specifications requires the instrument to be taken out of service immediately and inspected by an authorised WIKA service engineer.
2. Safety

If the instrument is transported from a cold into a warm environment, the formation of condensation may result in instrument malfunction. Before putting it back into operation, wait for the instrument temperature and the room temperature to equalise.

The manufacturer shall not be liable for claims of any type based on operation contrary to the intended use.

2.2 Personnel qualification

WARNING!
Risk of injury should qualification be insufficient!
Improper handling can result in considerable injury and damage to equipment.
- The activities described in these operating instructions may only be carried out by skilled personnel who have the qualifications described below.
- Keep unqualified personnel away from hazardous areas.

Skilled personnel

Skilled personnel are understood to be personnel who, based on their technical training, knowledge of measurement and control technology and on their experience and knowledge of country-specific regulations, current standards and directives, are capable of carrying out the work described and independently recognising potential hazards.

Special operating conditions require further appropriate knowledge, e.g. of aggressive media.

2.3 Additional safety instructions for instruments per ATEX and IECEx

WARNING!
Non-observance of these instructions and their contents may result in the loss of explosion protection.

WARNING!
Follow the requirements of the ATEX and IECEx directives.
Follow the respective national regulations concerning Ex-usage (e.g. IEC/EN 60079-10 and IEC/EN 60079-14).

2.4 Safety instructions for internally pressurised thermowells and measuring instruments

WARNING!
- Before installation, the operator should perform the suitability test for the particular application.
- The thermowells and measuring instruments must be chemically and mechanically resistant against the process media and must exhibit the same mechanical strength (pressure rating) as the vessel or pipeline.
- The thermowells and the measuring instruments are not suitable for abrasive media.
2. Safety

- Assembly and disassembly must only be carried out once the system has been depressurised. Beware of hot surfaces and residual media!
- Please observe and follow the permissible pressure and temperature limits for operation and the environment.
- The permissible ambient temperature given by the manufacturer must not be exceeded.
- The definition of appropriate maintenance and inspection intervals will depend on the individual application and is to be defined by the operator.
- Observe and follow the manufacturer’s specifications for installation, commissioning, operation, maintenance and inspection.
- To mount in line with the relevant thread standards, suitable bolts, screws, etc. must be used.
- To ensure the required sealing and trouble-free operation, appropriate seals should be used during mounting.
- The assembly of the thermowells or measuring instruments to the vessel/pipeline should be carried out so that it is permanently technically sealed.
- Electrostatic discharges of the thermowells or measuring instruments when earthing the vessel or pipeline should be eliminated.

2.5 Special hazards

WARNING!
Observe the information given in the applicable type examination certificate and the relevant country-specific regulations for installation and use in hazardous areas (e.g. IEC 60079-14, NEC, CEC). Non-observance can result in serious injury and/or damage to the equipment.

For additional important safety instructions for instruments with ATEX approval see chapter 2.3 “Additional safety instructions for instruments per ATEX”.

WARNING!
For hazardous media such as oxygen, acetylene, flammable or toxic gases or liquids, and refrigeration plants, compressors, etc., in addition to all standard regulations, the appropriate existing codes or regulations must also be followed.

WARNING!
Protection from electrostatic discharge (ESD) required.
The proper use of grounded work surfaces and personal wrist straps is required when working with exposed circuitry (printed circuit boards), in order to prevent static discharge from damaging sensitive electronic components.

To ensure safe working on the instrument, the operating company must ensure
- that suitable first-aid equipment is available and aid is provided whenever required.
- that the operating personnel are regularly instructed in all topics regarding work safety, first aid and environmental protection and know the operating instructions and, in particular, the safety instructions contained therein.
2. Safety

DANGER!
Danger of death caused by electric current
Upon contact with live parts, there is a direct danger of death.
- The instrument may only be installed and mounted by skilled personnel.
- Operation using a defective power supply unit (e.g. short circuit from the mains voltage to the output voltage) can result in life-threatening voltages at the instrument!

WARNING!
Residual media in the dismounted instrument can result in a risk to persons, the environment and equipment.
Take sufficient precautionary measures.

Do not use this instrument in safety or emergency stop devices. Incorrect use of the instrument can result in injury.

Should a failure occur, aggressive media with extremely high temperature and under high pressure or vacuum may be present at the instrument.

DANGER!
Make sure that the thermowell is sufficiently earthed.
2. Safety

2.6 Labelling, safety marks

Product label (example)

Additional data for Ex instruments

1. Model
2. Year of manufacture
3. Serial number
4. Transmitter model (only for design with transmitter)
5. Information on version (measuring element, output signal, measuring range...)
 Sensor in accordance with standard:
 F (Thin-film resistor)
6. Approval-related data

before mounting and commissioning the instrument, ensure you read the operating instructions!
3. Specifications

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Model TR25</th>
</tr>
</thead>
</table>
| **Temperature range** | -30 ... +150 °C (-22 ... +302 °F)
-50 ... +150 °C (-58 ... +302 °F) |
| **Sensor** | Pt100 (thin-film)
1 x 3-wire
1 x 4-wire |
| **Class accuracy of the sensor in accordance with IEC 60751** | Class A
Class B |
| **Materials** | Stainless steel 1.4435, 316L
Stainless steel 1.4435, 316L
NBR, PTFE or EPDM |
| **Surfaces** | Standard: $R_a \leq 0.76 \mu m$
Option: $R_a \leq 0.38 \mu m$
In addition, the wetted surfaces can be electropolished. |
| **Standard neck length** | 50 mm |
| **Standard neck tube diameter** | 12 mm |
| **Process connections** | Connection for pipes per DIN 11866 row A, B, C
Clamp per DIN 32676
Threaded connection per DIN 11851
Threaded connection per DIN 11864-1 form A
Threaded connection NEUMO BioConnect® |
| **Permissible ambient temperature** | -40 ... +80 °C
see operating instructions of the transmitter in question |

Pressure equipment directive

- For instruments with nominal widths of ≤ DN 25 (1"), an EU conformity evaluation in accordance with the Pressure Equipment Directive (PED) is not permitted.
- Instruments with nominal widths of ≤ DN 25 (1"), and thus without CE marking, should be designed and manufactured in line with the applicable sound engineering practice (PED article 4, chapter 3).
- For instruments > DN 25 (1") and for the associated marking on the measuring instrument or thermowell, WIKA confirms conformity with the Pressure Equipment Directive in accordance with the conformity assessment procedure, module H.

For further specifications see WIKA data sheet TE 60.25 and the order documentation.
4. Design and function

4.1 Description
This resistance thermometer, through a wide variety of process connections, enables trouble-free connection to many different processes.

3- or 4-wire platinum measurement resistances in accuracy classes A and B per DIN EN 60751 serve as sensors.

Analogue or digital transmitters built into the connection head are capable of making various output signals available, for example 4 ... 20 mA, HART® protocol, FOUNDATION™ fieldbus or PROFIBUS® PA.

4.2 Dimensions in mm

- Version with clamp connection
4. Design and function

Clamp per DIN 32676 for pipes per DIN 11866, row A

<table>
<thead>
<tr>
<th>DN</th>
<th>For pipe</th>
<th>Dimensions</th>
<th>PN 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ø D x L</td>
<td>Ø D</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>13 x 1.5</td>
<td>10 71 34 40</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>19 x 1.5</td>
<td>16 71 34 40</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>23 x 1.5</td>
<td>20 71 34 40</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>28 x 1</td>
<td>26 71 50.5 40</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>34 x 1</td>
<td>32 71 50.5 40</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>40 x 1</td>
<td>38 71 50.5 40</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>52 x 1</td>
<td>50 71 64.0 25</td>
<td></td>
</tr>
</tbody>
</table>

Clamp per DIN 32676 for pipes per DIN 11866 row B (ISO 1127)

<table>
<thead>
<tr>
<th>DN</th>
<th>For pipe</th>
<th>Dimensions</th>
<th>PN 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ø D x L</td>
<td>Ø D</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>13.5 x 1.6</td>
<td>10.3 71 25.0 40</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>17.2 x 1.6</td>
<td>14.0 71 25.0 40</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>21.3 x 1.6</td>
<td>18.1 71 34.0 40</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>26.9 x 1.6</td>
<td>23.7 71 50.5 40</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>33.7 x 2</td>
<td>29.7 71 50.5 40</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>42.4 x 2</td>
<td>38.4 71 50.5 40</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>48.3 x 2</td>
<td>44.3 71 64.0 25</td>
<td></td>
</tr>
</tbody>
</table>

Clamp per DIN 32676 for pipes per DIN 11866 row C (ASME BPE)

<table>
<thead>
<tr>
<th>DN</th>
<th>For pipe</th>
<th>Dimensions</th>
<th>PN 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ø D x L</td>
<td>Ø D</td>
<td></td>
</tr>
<tr>
<td>¾"</td>
<td>19.05 x 1.65</td>
<td>15.75 71 25 40</td>
<td></td>
</tr>
<tr>
<td>1"</td>
<td>25.4 x 1.65</td>
<td>22.1 71 50.5 40</td>
<td></td>
</tr>
<tr>
<td>1 ½"</td>
<td>38.1 x 1.65</td>
<td>34.8 71 50.5 40</td>
<td></td>
</tr>
<tr>
<td>2"</td>
<td>50.8 x 1.65</td>
<td>47.5 71 64.0 25</td>
<td></td>
</tr>
</tbody>
</table>

Tri-clamp for pipes per BS4825 part 3 and O.D.-tube

<table>
<thead>
<tr>
<th>DN</th>
<th>For pipe</th>
<th>Dimensions</th>
<th>PN 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ø D x L</td>
<td>Ø D</td>
<td></td>
</tr>
<tr>
<td>½"</td>
<td>12.7 x 1.6</td>
<td>9.5 71 25.0 40</td>
<td></td>
</tr>
<tr>
<td>¾"</td>
<td>19.05 x 1.65</td>
<td>15.85 71 25.0 40</td>
<td></td>
</tr>
<tr>
<td>1"</td>
<td>25.4 x 1.65</td>
<td>22.2 71 50.5 40</td>
<td></td>
</tr>
<tr>
<td>1 ½"</td>
<td>38.1 x 1.65</td>
<td>34.9 71 50.5 40</td>
<td></td>
</tr>
<tr>
<td>2"</td>
<td>50.8 x 1.65</td>
<td>47.6 71 64.0 25</td>
<td></td>
</tr>
</tbody>
</table>

1) For maximum pressure range consider pressure rating of clamp.
2) Maximum operating temperature 150 °C
3) All thermowells of this series that are internally pressurised, with a nominal diameter (DN) > 25 mm, are manufactured and tested to module H of the pressure equipment directive.
4. Design and function

- **Version with threaded connection**

Threads per DIN 11851

<table>
<thead>
<tr>
<th>DN</th>
<th>For pipe</th>
<th>Dimensions</th>
<th>PN</th>
<th>2)</th>
<th>3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>13 x 1.5</td>
<td>Ø Di 84</td>
<td>76</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>19 x 1.5</td>
<td>Ø Di 84</td>
<td>76</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>23 x 1.5</td>
<td>Ø Di 84</td>
<td>76</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>29 x 1.5</td>
<td>Ø Di 84</td>
<td>76</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>35 x 1.5</td>
<td>Ø Di 84</td>
<td>76</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>41 x 1.5</td>
<td>Ø Di 84</td>
<td>76</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>53 x 1.5</td>
<td>Ø Di 84</td>
<td>76</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>70 x 2</td>
<td>Ø Di 88</td>
<td>72</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Thread NEUMO BioConnect® for pipes per DIN 11866 row A

<table>
<thead>
<tr>
<th>DN</th>
<th>For pipe</th>
<th>Dimensions</th>
<th>PN</th>
<th>2)</th>
<th>3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>19 x 1.5</td>
<td>M30 x 1.5</td>
<td>84</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>23 x 1.5</td>
<td>M36 x 2</td>
<td>84</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>29 x 1.5</td>
<td>M42 x 2</td>
<td>84</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>35 x 1.5</td>
<td>M52 x 2</td>
<td>84</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>41 x 1.5</td>
<td>M56 x 2</td>
<td>84</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>53 x 1.5</td>
<td>M86 x 2</td>
<td>84</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>70 x 2</td>
<td>M90 x 3</td>
<td>88</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Thread NEUMO BioConnect® for pipes per DIN 11866 row B (ISO 1127)

<table>
<thead>
<tr>
<th>DN</th>
<th>For pipe</th>
<th>Dimensions</th>
<th>PN</th>
<th>2)</th>
<th>3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>21.3 x 1.6</td>
<td>M30 x 1.5</td>
<td>84</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>26.9 x 1.6</td>
<td>M36 x 2</td>
<td>84</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>33.7 x 2</td>
<td>M42 x 2</td>
<td>84</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>42.4 x 2</td>
<td>M52 x 2</td>
<td>84</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>48.3 x 2</td>
<td>M56 x 2</td>
<td>84</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>60.3 x 2</td>
<td>M86 x 2</td>
<td>84</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>76.1 x 2.3</td>
<td>M90 x 3</td>
<td>88</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

2) Maximum operating temperature 150 °C
3) All thermowells of this series that are internally pressurised, with a nominal diameter (DN) > 25 mm, are manufactured and tested to module H of the pressure equipment directive.

Flange connections, clamp connections and further nominal widths on request.
4. Design and function / 5. Transport, packaging and storage

4.3 Scope of delivery
Cross-check scope of delivery with delivery note.

5. Transport, packaging and storage

5.1 Transport
Check the instrument for any damage that may have been caused by transport. Obvious damage must be reported immediately.

5.2 Packaging
Do not remove packaging until just before mounting. Keep the packaging as it will provide optimum protection during transport (e.g. change in installation site, sending for repair).

5.3 Storage
Permissible conditions at the place of storage:
■ Storage temperature: 0 ... 70 °C
■ Humidity: 35 ... 85 % relative humidity (no condensation)

Avoid exposure to the following factors:
■ Direct sunlight or proximity to hot objects
■ Mechanical vibration, mechanical shock (putting it down hard)
■ Soot, vapour, dust and corrosive gases
■ Potentially explosive environments, flammable atmospheres

Store the instrument in its original packaging in a location that fulfils the conditions listed above. If the original packaging is not available, pack and store the instrument as described below:
1. Wrap the instrument in an antistatic plastic film.
2. Place the instrument along with shock-absorbent material in the packaging.
3. If stored for a prolonged period of time (more than 30 days), place a bag containing a desiccant inside the packaging.

WARNING!
Before storing the instrument (following operation), remove any residual media. This is of particular importance if the medium is hazardous to health, e.g. caustic, toxic, carcinogenic, radioactive, etc.
6. Commissioning, operation

CAUTION!
Mount the resistance thermometer from below when a horizontal pipeline is only partially filled in operation.
Before commissioning the thermowell, clean it in accordance with the cleaning specifications of the plant.

WARNING!
Use appropriate sealing material. The sealing must be checked regularly by the plant operator.

The thermowell must not be bent or altered in order to mount it. The fitting should be carried out such that there can be no damage to the thermowell as a result of the plant operation or the operator. If necessary, one of the thermowell/pipeline mountings mentioned below (e.g. with pipe clamps) will be required. In particular, the neck should be secured by appropriate methods against bending.

7. Information on mounting and operation in hazardous areas (Europe)

7.1 General information on explosion protection

The requirements of the ATEX directive must be followed. Additionally the specifications of the respective national regulations concerning Ex usage apply.

A) The responsibility for classification of zones lies with the plant operator and not the manufacturer/supplier of the equipment.

B) The plant operator guarantees, and is solely responsible, that all thermometers in use are identifiable with respect to all safety-relevant characteristics. Damaged thermometers may not be used. Repairs may only be completed using original spare parts from the original supplier; otherwise the requirements of the approval are not fulfilled.
 The manufacturer shall not be responsible for constructional modifications after delivery of the instruments.

C) If a component of electrical equipment, on which the explosion protection depends, is repaired, then the electrical equipment may only be put back into use, after an authorised expert has stated that it corresponds to the fundamental characteristics of the requirements for explosion protection. In addition this expert must provide a certificate for this and provide the equipment with a test mark.
7. Information on mounting and operation in hazardous areas

D) Item C) shall not apply if the component was repaired by the manufacturer in accordance with the requirements and regulations.

E) When using transmitters and digital displays, the following must be observed:
 - The contents of these operating instructions and those of the transmitter.
 - The relevant regulations for installation and use of electrical systems.
 - The regulations and directives regarding explosion protection. Transmitters and digital displays must have their own approval.

F) When ordering spare parts, the parts that are to be replaced must be specified exactly:
 - Ignition protection type (here Ex i)
 - Approval No.
 - Order No.
 - Manufacturing No.
 - Order item

7.1.1 Special conditions of use (X conditions)
Versions with Ø < 3 mm or “non-insulated” versions are operationally non-compliant with section 6.3.12 of IEC/EN 60079-11. Therefore, from a safety-relevant point of view, these intrinsically safe circuits must be considered galvanically connected to the earth potential, which is why equipotential bonding must be secured for the entire installation of the intrinsically safe circuits. In addition, for the connection, separate conditions in accordance with IEC/EN 60079-14 must be observed.

Electrostatic discharges must be avoided in instruments, that due to their design, do not conform to the electrostatic requirements in accordance with IEC/EN 60079-0.

The transmitters and digital displays used must have their own IEC/EN approval. The installation conditions, electrical connected loads, temperature classes or maximum surface temperatures for use in potentially explosive dust atmospheres and permissible ambient temperatures can be seen from the relevant approvals and must be observed.

Thermal backflow from the process, that exceeds the permissible ambient temperature of the transmitter, must not be allowed to occur. It must be prevented by installing suitable heat insulation or a neck tube of suitable length.

If the wall thickness is below 1 mm, the instruments must not be subjected to ambient stresses that may have an adverse effect on the partition wall. Alternatively, a thermowell of suitable minimum wall thickness may be used.

When using a thermowell/neck tube, the overall instrument must be designed such that it allows installation in a way that results in a sufficiently tight gap (IP67) or a flameproof gap (IEC/EN 60079-1) towards the less hazardous area.
When housings are used, they must either have their own suitable approval or comply with the minimum requirements. IP protection: at least IP20 (at least IP65 for dust), applies to all housings. However, light metal housings must be suitable in accordance with IEC/EN 60079-0 Section 8.1. In addition, non-metallic housings or powder-coated housings must meet the requirements of IEC/EN 60079-0 or have a suitable warning note.

Protective measures for applications that require EPL Ga or Gb:
Operational friction or impact between equipment parts made of light metals or their alloys (e.g. aluminium, magnesium, titanium or zirconium) with equipment parts made of iron/steel is not permitted. Operational friction or impact between two light metals is permitted.

7.1.2 Ex marking
For applications without transmitter (digital displays) requiring instruments of equipment Group II (potentially explosive gas atmospheres), the following temperature class classification and ambient temperature ranges apply:

<table>
<thead>
<tr>
<th>Marking</th>
<th>Temperature class</th>
<th>Ambient temperature range (T_a)</th>
<th>Max. surface temperature (T_{\text{max}}) at the sensor or thermowell tip</th>
</tr>
</thead>
</table>
| II 1G Ex ia IIC T6 Ga
II 1/2G Ex ib IIC T6 Ga/Gb | T6 | (-50) 1) -40 ... +80 °C | \(T_M\) (temperature of the medium) + self-heating |
| II 1G Ex ia IIC T5 Ga
II 1/2G Ex ib IIC T5 Ga/Gb | T5 | (-50) 1) -40 ... +80 °C | For this, the special conditions (17) must be observed. |
| II 1G Ex ia IIC T4 Ga
II 1/2G Ex ib IIC T4 Ga/Gb
II 1G Ex ia IIC T3 Ga
II 1/2G Ex ib IIC T3 Ga/Gb | T4, T3 | (-50) 1) -40 ... +80 °C |

1) The values in brackets apply to special designs. These sensors are manufactured using special sealing compounds. Moreover, they feature housings made of stainless steel and cable glands for low-temperature ranges.

When there is a built-in transmitter and/or a digital display, the special conditions from the type examination certificate (see item 17) apply.
7. Information on mounting and operation in hazardous areas

For applications requiring instruments of equipment Group II (potentially explosive dust atmospheres), the following surface temperatures and ambient temperature ranges apply:

Table 2

<table>
<thead>
<tr>
<th>Marking</th>
<th>Power P_i</th>
<th>Ambient temperature range (T_a)</th>
<th>Max. surface temperature (T_{max}) at the sensor or thermowell tip</th>
</tr>
</thead>
<tbody>
<tr>
<td>II 1D Ex ia IIIC T65 °C Da/Db</td>
<td>750 mW</td>
<td>(-50) 1 -40 ... +40 °C</td>
<td>T_M (temperature of the medium) + self-heating</td>
</tr>
<tr>
<td>II 1/2D Ex ib IIIC T65 °C Da/Db</td>
<td>650 mW</td>
<td>(-50) 1 -40 ... +70 °C</td>
<td>For this, the special conditions (17) must be observed.</td>
</tr>
<tr>
<td>II 1D Ex ia IIIC T95 °C Da/Db</td>
<td>550 mW</td>
<td>(-50) 1 -40 ... +80 °C</td>
<td></td>
</tr>
<tr>
<td>II 1/2D Ex ib IIIC T95 °C Da/Db</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 1D Ex ia IIIC T125 °C Da/Db</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 1/2D Ex ib IIIC T125 °C Da/Db</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 The values in brackets apply to special designs. These sensors are manufactured using special sealing compounds. Moreover, they feature housings made of stainless steel and cable glands for low-temperature ranges.

When there is a built-in transmitter and/or a digital display, the special conditions from the type examination certificate (see item 17) apply.

Use in methane atmospheres

Owing to the higher minimum ignition energy of methane, the instruments can also be used where methane causes a potentially explosive atmosphere. The instrument can be optionally marked with IIC + CH4.

For applications that require EPL Gb or Db, instruments with „ia“ marking may also be used in measuring circuits of type „ib“.

7.2 Temperature class classification, ambient temperatures

The permissible ambient temperatures depend on the temperature class, the housings used and any transmitters and/or digital displays fitted as options. When a thermometer is connected to a transmitter and/or a digital display, the lowest value of either the ambient temperature limits or the highest temperature class will apply. The lower temperature limit is -40 °C; and -50 °C for special designs.

Where there are neither transmitters nor digital displays mounted within the housing, there will also be no additional warming.

With a built-in transmitter (optionally with digital display), heating caused by the operation of the transmitter or digital display may occur.
7. Information on mounting and operation in hazardous areas

For applications without transmitters (digital displays) that require Group II instruments (potentially explosive gas atmospheres), the following temperature class classification and ambient temperature ranges apply:

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Ambient temperature range (T_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>(-50) -40 … +80 °C</td>
</tr>
<tr>
<td>T5</td>
<td>(-50) -40 … +80 °C</td>
</tr>
<tr>
<td>T4, T3</td>
<td>(-50) -40 … +80 °C</td>
</tr>
</tbody>
</table>

See and observe the permissible ambient temperatures and surface temperatures for third-party products from the relevant approvals and/or data sheets.

Example

For instruments fitted with a DIH10 transmitter and digital display, for example, the following limit for temperature class classification applies:

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Ambient temperature range (T_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-40 … +60 °C</td>
</tr>
</tbody>
</table>

For applications that require Group II instruments (potentially explosive dust atmospheres), the following surface temperatures and ambient temperature ranges apply:

<table>
<thead>
<tr>
<th>Power P_i</th>
<th>Ambient temperature range (T_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>750 mW</td>
<td>(-50) -40 … +40 °C</td>
</tr>
<tr>
<td>650 mW</td>
<td>(-50) -40 … +70 °C</td>
</tr>
<tr>
<td>550 mW</td>
<td>(-50) -40 … +80 °C</td>
</tr>
</tbody>
</table>

See and observe the permissible ambient temperatures and surface temperatures for third-party products from the relevant approvals and/or data sheets.

The values in brackets apply to special designs. These sensors are manufactured using special sealing compounds. Moreover, they are equipped with connection heads made of stainless steel and cable glands for the low-temperature range.

These thermometers are suitable for temperature classes T6 ... T3 in accordance with the approval certificate. This applies to instruments without built-in transmitters and/or digital displays. Thermometers equipped with transmitters and/or digital displays are for use in temperature classes T6...T4 and are marked accordingly. Using equipment for applications which require a lower temperature class (e.g. T2) than the marked one is permissible. In doing so, it must be ensured that the maximum ambient temperature for safe operation of the instrument is not exceeded.
7. Information on mounting and operation in hazardous areas

7.3 Temperature carry-over from the process
A heat backflow from the process that exceeds the operating temperature of the transmitter (digital display) or housing is not permissible and must be prevented by installing suitable heat insulation or a neck tube of suitable length.

Increasing the separation of the connection components and hot surfaces
The neck distance (N) is defined as the distance between the lower edge of the connection head (or the housing) to the heat-emitting surface. The temperature to be expected at the lower edge of the connection head or housing is, at most, 80 °C. The conditions for built-in transmitters or displays must be observed. If required, the neck length must be increased accordingly.

To help select the minimum neck length, the following standard values have been determined.

<table>
<thead>
<tr>
<th>Maximum temperature of the medium</th>
<th>Recommendation for dimension N</th>
<th>Recommendation for dimension X</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 °C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>135 °C</td>
<td>20 mm</td>
<td>20 mm</td>
</tr>
<tr>
<td>200 °C</td>
<td>50 mm</td>
<td>50 mm</td>
</tr>
<tr>
<td>> 200 °C ≤ 450 °C</td>
<td>100 mm</td>
<td>100 mm</td>
</tr>
</tbody>
</table>

WARNING!
For reasons of work safety and saving of resources, hot surfaces should be protected against accidental touch and energy loss by means of insulation.
7. Information on mounting and operation in hazardous areas

7.4 Mounting examples in hazardous areas

7.4.1 Possible installation methods with the marking II 1G Ex ia IIC T6 Ga or II 1D Ex ia IIIC T65 °C Da

The sensor together with housing or connection head is located in Zone 0 (Zone 20). An Ex ia type circuit must be used. Connection heads/cases made of aluminium are not permitted in zone 0. At this position, WIKA uses connection heads/cases made of stainless steel.
7.4.2 Possible installation methods with the marking II 1/2 Ex ib IIC T6 Ga/Gb or II 1/2 D Ex ib IIC T65 °C Da/Db

The sensor or thermowell tip protrudes into Zone 0. The housing or connection head is in Zone 1 (Zone 21) or Zone 2 (Zone 22). It is sufficient to use an Ex ib type circuit.

Zone separation is guaranteed if sufficiently-tight (IP67) process connections are used.

Examples of suitable process connections include gas-tight standardised industrial flanges, threaded connections or pipe connections.

The welded parts, process connections, compression fittings, thermowells or housings used must be designed such that they withstand all influencing variables resulting from the process, such as temperature, flow forces, pressure, corrosion, vibration and impacts.
8. Additional notes for instruments with EHEDG and 3-A

8.1 Compliance with the conformity in accordance with 3-A
For a 3-A compliant connection for milk thread fittings per DIN 11851, suitable profile sealings have to be used (e.g. SKS Komponenten BV or Kieselmann GmbH).

8.2 Compliance with EHEDG conformity
For an EHEDG conform connection, sealings in accordance with the current EHEDG policy document must be used.

Manufacturers of sealings

- Sealings for connections per ISO 2852, DIN 32676 and BS 4825 part 3: e.g. Combifit International B.V.
- Sealings for connections per DIN 11851: e.g. Kieselmann GmbH
- Neumo BioConnect® sealings: e.g. Neumo GmbH & Co. KG

8.3 Mounting instructions
Observe the following instructions, especially for EHEDG certified and 3-A conform instruments.

- To maintain the EHEDG certification, one of the EHEDG-recommended process connections must be used.
- To maintain the conformity to the 3-A standard, a 3-A conform process connection must be used.
- Mount the electrical thermometer including thermowell with minimal dead space and able to be cleaned easily.
- The mounting position of the electrical thermometer including thermowell should be designed to be self-draining.
- The mounting position must not form a draining point or cause a basin to be formed.

8.4 Cleaning in place (CIP) cleaning process

- When cleaning from outside (“wash down”), observe the permissible temperature and ingress protection.
- Only use cleaning agents which are suitable for the seals used.
- Cleaning agents must not be abrasive nor corrosively attack the materials of the wetted parts.
- Avoid thermal shocks or fast changes in the temperature. The temperature difference between the cleaning agent and rinsing with clear water should be as low as possible. Negative example: Cleaning with 80 °C and rinsing at +4 °C with clear water.
9. Electrical connection values

9.1 Electrical data without built-in transmitter or digital display
For group II instruments (potentially explosive gas atmospheres) 3), the following maximum connection values apply:

\[U_i = DC\ 30\ V \]
\[I_i = 550\ mA \]
\[P_i (at\ the\ sensor\ 1)) = 1.5\ W \]

For Group II instruments (potentially explosive dust atmospheres), the following maximum connection values apply:

\[U_i = DC\ 30\ V \]
\[I_i = 550\ mA \]
\[P_i (at\ the\ sensor\ 2)) = for\ the\ values,\ see\ "Table\ 2"\ (column\ 2),\ chapter\ 7.1.2\ "Ex\ marking" \]

The internal inductance \((L_i) \) and capacitance \((C_i) \) of the TR25 are negligible.

Sensor circuit in Ex ia or ib, IIC intrinsic safety ignition protection
Only for connection to intrinsically safe circuits with the following maximum output values for Group II instruments (potentially explosive gas atmospheres):

\[U_o = DC\ 30\ V \]
\[I_o = 550\ mA \]
\[P_o = 1.5\ W \]

For Group II instruments (potentially explosive dust atmospheres), the following maximum output values apply to their connection to intrinsically safe circuits:

\[U_o = DC\ 30\ V \]
\[I_o = 550\ mA \]
\[P_o = for\ the\ values,\ see\ "Table\ 2"\ (column\ 2),\ chapter\ 7.1.2\ "Ex\ marking" \]

1) The permissible power to the sensor depends on the temperature of the medium \(T_M \), the temperature class and the thermal resistance \(R_{th} \), but shall not be more than 1.5 W.
 For calculation examples, see chapter 10 “Calculation examples for self-heating of the tubular body at the sensor installation point”.

2) The permissible power to the sensor depends on the temperature of the medium \(T_M \), the maximum allowed surface temperature and the thermal resistance \(R_{th} \), but shall not be more than the values from “Table 2” (column 2), see chapter 7.1.2 “Ex marking”.

3) Use in methane atmospheres
 Owing to the higher minimum ignition energy of methane, the instruments can also be used where methane causes a potentially explosive atmosphere. The instrument can be optionally marked with IIC + CH₄.
9. Electrical connection values

9.2 Electrical data for built-in transmitters or digital displays
For the sensor circuit, the values mentioned in 8.1 apply.
Signal circuit in Ex ia or ib, IIC intrinsic safety ignition protection

\[U_i = \text{depending on the transmitter/digital display} \]
\[I_i = \text{depending on the transmitter/digital display} \]
\[P_i = \text{in the housing: depending on the transmitter/digital display} \]
\[C_i = \text{depending on the transmitter/digital display} \]
\[L_i = \text{depending on the transmitter/digital display} \]

The transmitters and digital displays used must have their own certification in accordance with IEC/EN. The installation conditions and electrical connection values can be seen from the relevant approvals and must be observed.

9.3 Electrical data with built-in transmitter in accordance with the FISCO model
The transmitters/digital displays used for the application range in accordance with the FISCO model are considered FISCO field units. The requirements in accordance with IEC/EN 60079-27, and the connection conditions of the approvals in accordance with FISCO, apply.
10. Calculation examples for self-heating of the tubular body at the sensor installation point

In-line resistance thermometer model TR25 with built-in head-mounted transmitter model T32.1S.
Power supply is, for example, via a model KFD2-STC4-EX1 transducer power supply (WIKA Article No. 2341268).

T_{max} is obtained by adding the temperature of the medium and the self-heating. The self-heating depends on the supplied power P_0 of the transmitter and the thermal resistance R_{th}.

The following formula is used for the calculation: $T_{\text{max}} = P_0 \times R_{\text{th}} + T_M$

T_{max} = Surface temperature (max. temperature of the tubular body at the sensor installation point)
P_0 = From transmitter data sheet
R_{th} = Thermal resistance [K/W]
T_M = Temperature of the medium

Prerequisite is an ambient temperature T_{amb} of -20 ... +40 °C. Thermal resistance for the TR25 (R_{th}) 60 K/W

Example

Temperature of the medium: $T_M = 150 \degree C$
Supplied power: $P_0 = 15.2 \text{ mW}$
Temperature class T3 (200 °C) must not be exceeded
Thermal resistance [R_{th} in K/W] = 60 K/W
Self-heating: $0.0152 \text{ W} \times 60 \text{ K/W} = 0.91 \text{ K}$

$T_{\text{max}} = T_M + \text{self-heating}: 150 \degree C + 0.91 \degree C = 150.91 \degree C$

The result shows that in this case self-heating of the tubular body at the sensor installation point is negligible.

As safety clearance for type-examined instruments (for T6 to T3), another 5 °C must be subtracted from the 200 °C; hence 195 °C would be permissible. This means that in this case temperature class T3 is not exceeded.

Additional information

Temperature class for T3 = 200 °C
Safety clearance for type-examined instruments (T6 to T3) $^1) = 5 \text{ K}$
Safety clearance for type-examined instruments (T1 to T2) $^1) = 10 \text{ K}$

$^1)$ IEC/EN 60079-0: 2009 Section 26.5.1
10. Calculation examples ... / 11. Maintenance and cleaning

Simplified verification of intrinsic safety for the above-mentioned combination

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Head transmitter</th>
<th>Power supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uᵢ: DC 30 V</td>
<td>Uₒ: DC 6.5 V</td>
<td>Uᵢ: DC 30 V</td>
</tr>
<tr>
<td>Iᵢ: 550 mA</td>
<td>Iₒ: 9.3 mA</td>
<td>Iᵢ: 130 mA</td>
</tr>
<tr>
<td>Pᵢ (max) at the sensor: 1.5 W</td>
<td>Pₒ: 15.2 mW</td>
<td>Pᵢ: 800 mW</td>
</tr>
<tr>
<td>Cᵢ: negligible</td>
<td>Cₒ: 24 µF</td>
<td>Cᵢ: 7.8 nF</td>
</tr>
<tr>
<td>Lᵢ: negligible</td>
<td>Lₒ: 365 mH</td>
<td>Lᵢ: 100 µH</td>
</tr>
</tbody>
</table>

Upon comparing the values, it is obvious that it is permissible to connect these units to one another. However, the operator must also take into account the values for inductance and capacitance of the electrical connection leads.

11. Maintenance and cleaning

11.1 Maintenance
The resistance thermometer described here is maintenance-free.

Repairs should only be carried out by the manufacturer or, following prior consultation, by correspondingly qualified skilled personnel.

11.2 Cleaning

CAUTION!

■ Before cleaning, correctly disconnect the instrument from the pressure supply, switch it off and disconnect it from the mains.
■ Clean the instrument with a moist cloth.
■ Electrical connections must not come into contact with moisture.
■ Wash or clean the dismounted instrument before returning it, in order to protect persons and the environment from exposure to residual media.
■ Residual media in the dismounted instrument can result in a risk to persons, the environment and equipment. Take sufficient precautionary measures.

For information on returning the instrument see chapter 13.2 “Return”.

11.3 Calibration, Recalibration
It is recommended that the measuring instrument is recalibrated at regular intervals of approx. 24 months. This period can reduce, depending on the particular application. The measuring instrument must be dismounted for calibration. The calibration can only be carried out by the manufacturer.
12. Faults

<table>
<thead>
<tr>
<th>Faults</th>
<th>Causes</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>No signal/line break</td>
<td>Mechanical load too high or overtemperature</td>
<td>Replacement of the resistance thermometer</td>
</tr>
<tr>
<td>Erroneous measured values</td>
<td>Sensor drift caused by overtemperature</td>
<td>Replacement of the resistance thermometer</td>
</tr>
<tr>
<td>Erroneous measured values (too low)</td>
<td>Entry of moisture into cable</td>
<td>Replacement of the resistance thermometer</td>
</tr>
<tr>
<td>Erroneous measured values and response times too long</td>
<td>Wrong mounting geometry or heat dissipation too high</td>
<td>The temperature-sensitive area of the sensor must be inside the medium. Beware of the mounting position of the sensor!</td>
</tr>
<tr>
<td></td>
<td>Deposits within the thermowell</td>
<td>Remove deposits</td>
</tr>
<tr>
<td>Indication of the measured value jumps</td>
<td>Cable break in connecting cable or loose contact caused by mechanical overload</td>
<td>Check the supply cable</td>
</tr>
<tr>
<td>Corrosion</td>
<td>Composition of the medium not as expected or modified or wrong thermowell material selected</td>
<td>Analyse medium and then select a more-suitable material or replace thermowell regularly</td>
</tr>
<tr>
<td>Signal interference</td>
<td>Stray currents caused by electric fields or earth loops</td>
<td>Use of screened connecting cables, increase in the distance to motors and power lines</td>
</tr>
<tr>
<td></td>
<td>Earth circuits</td>
<td>Elimination of potentials, use of galvanically isolated transmitter supply isolators or transmitters</td>
</tr>
</tbody>
</table>

CAUTION!

If faults cannot be eliminated by means of the measures listed above, shut down the instrument immediately, and ensure that pressure and/or signal are no longer present, and secure the instrument from being put back into operation inadvertently.

In this case, contact the manufacturer.

If a return is needed, follow the instructions given in chapter 13.2 “Return”.
13. Dismounting, return and disposal

WARNING!
Residual media in dismounted instruments can result in a risk to persons, the environment and equipment. Sufficient precautionary measures must be taken.

13.1 Dismounting

WARNING!
Risk of burns!

Let the instrument cool down sufficiently before dismounting it! During dismounting there is a risk of dangerously hot pressure media escaping.

Only disconnect thermometers once the system has been depressurised!

13.2 Return

WARNING!

Strictly observe the following when shipping the instrument:

All instruments delivered to WIKA must be free from any kind of hazardous substances (acids, bases, solutions, etc.).

When returning the instrument, use the original packaging or a suitable transport package.

To avoid damage:
1. Wrap the instrument in an antistatic plastic film.
2. Place the instrument along with shock-absorbent material in the packaging.
 - Place shock-absorbent material evenly on all sides of the transport packaging.
3. If possible, place a bag containing a desiccant inside the packaging.
4. Label the shipment as carriage of a highly sensitive measuring instrument.

The returns form can be found under the heading “Service” at www.wika.com.

13.3 Disposal

Incorrect disposal can put the environment at risk.
Dispose of instrument components and packaging materials in an environmentally compatible way and in accordance with the country-specific waste disposal regulations.

Do not dispose of with household waste. Ensure a proper disposal in accordance with national regulations.
Appendix 1: EU declaration of conformity

EU-Konformitätserklärung
EU Declaration of Conformity

Dokument Nr.: 11570700.09
Document No.: 11570700.09

Wir erklären in alleiniger Verantwortung, dass die mit CE gekennzeichneten Produkte
We declare under our sole responsibility that the CE marked products

Typenbezeichnung: TR... (1)
Model Designation: TR...

Beschreibung: Widerstandsthermometer, Thermoelemente
Description: Resistance Thermometers, Thermocouples

gemäß gültigem Datenblatt: Siehe Anhang
according to the valid data sheet: Refer to annex

die wesentlichen Schutzanforderungen der folgenden Richtlinien erfüllen: Harmonisierte Normen:
comply with the essential protection requirements of the directives: Harmonized standards:

2011/65/EU Gefährliche Stoffe (RoHS)
2011/65/EU Hazardous substances (RoHS)

2014/68/EU Druckgeräte-Richtlinie (DGRRL) (2)
2014/68/EU Pressure Equipment Directive (PED) (2)

2014/30/EU Elektromagnetische Verträglichkeit (EMV) (3)
2014/30/EU Electromagnetic Compatibility (EMC) (3)

2014/34/EU Explosionsschutz (ATEX) (1)
2014/34/EU Explosion protection (ATEX) (1)

(1) Detaillierte Angaben siehe Anhang
Detaillierte Information refer to Annex

(2) TR25 DN >25: Modul H, Umfassende Qualitätssicherung, Zertifikat DGR-0036-QS-1036-17 von TÜV SÜD Industrieservice GmbH,
TR25 DN >25: Module H, full quality assurance, certificate DGR-0036-QS-1036-17 of TÜV SÜD Industrieservice GmbH,
D-80686 München (Reg.-Nr. 0036).
D-80686 München (Reg. no. 0036).

(3) Für optional eingebaute Transmitter oder Anzeigen gelten deren EU-Konformitätserklärungen und die darin gelisteten Normen.
For optional built-in transmitters or indicators their respective EU declarations of conformity and the therein listed standards apply.

Unterzeichnet für und im Namen von / Signed for and on behalf of
WIKA Alexander Wiegand SE & Co. KG
Klingenberg, 2019-02-05

Stefan Heidinger, Vice President Electrical Temperature Measurement
Franz-Josef Vogel, Executive Vice President Process Instrumentation

WIKAI

14073045.05 12/2019 EN/DE
WIKA operating instructions model TR25 (Ex i)
EU-Konformitätserklärung

EU Declaration of Conformity

11570700.09, Anhang 01 Typcodestruktur / Annex 01 Model Code Structure

<table>
<thead>
<tr>
<th>X</th>
<th>XXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>bcd</td>
</tr>
</tbody>
</table>

Beispiel / Example

TR10-C - AIB

a Typenbezeichnung: siehe Anhang 02 / Model Designation: Refer to Annex 02

b Zulassung / Approval

A = ATEX,
I = IECEx und / and ATEX
Z = Nicht Ex / Non Ex

Alle anderen Buchstaben des Alphabets und die Ziffern 0 bis 9, ausgenommen die Buchstaben N und Z, sind reservierte Zeichen für andere Zulassungen zusätzlich zu ATEX und IECEx.

All other letters of alphabet and numbers 0 till 9 excluded the letters N and Z are reserved characters for other approvals additional to ATEX and IECEx.

c Zündschutzart / Type of Protection

E = Ex e
N = Ex nA
I = Ex i

Ex t nur in Verbindung mit anderen Zündschutzarten wie Ex e oder Ex nA

Ex t only in combination with other types of ignition protection like Ex e or Ex nA

d Zonen (EPL) / Zones (EPL)

<table>
<thead>
<tr>
<th>A</th>
<th>Zone 0 (EPL Ga)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Zone 1/2 (EPL Ga/Gb)</td>
</tr>
<tr>
<td>C</td>
<td>Zone 1 (EPL Gb)</td>
</tr>
<tr>
<td>D</td>
<td>Zone 2 (EPL Gc)</td>
</tr>
</tbody>
</table>

Gaszonen / Gas zones

E = Zone 20 (EPL Da)
F = Zone 20/21 (EPL Da/Db)
G = Zone 21 (EPL Db)
H = Zone 22 (EPL Dc)

<table>
<thead>
<tr>
<th>Gaszone</th>
<th>Zone (EPL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Zone 0</td>
</tr>
<tr>
<td>B</td>
<td>Zone 1/2</td>
</tr>
<tr>
<td>C</td>
<td>Zone 1</td>
</tr>
<tr>
<td>D</td>
<td>Zone 2</td>
</tr>
</tbody>
</table>

Mögliche Kennzeichnung bei Auswahl „J“ bei Zündschutzart

Possible marking when "J" is selected for type of protection

Ex	1G Ex ia IIC T1, T2, T3, T4, T5, T6 Ga
Ex	1/2G Ex ia IIC T1, T2, T3, T4, T5, T6 Ga/Gb
Ex	2G Ex ib IIC T1, T2, T3, T4, T5, T6 Gb
Ex	1D Ex Ia IIC T65°C, T95°C, T125°C Da
Ex	1/2D Ex Ia IIC T65°C, T95°C, T125°C Da/Db
Ex	2D Ex Ia IIC T65°C, T95°C, T125°C Db
Ex	2D Ex ib IIC T65°C, T95°C, T125°C Db
Ex	3G Ex Ic IIC T1, T2, T3, T4, T5, T6 Gc X

Mögliche Kennzeichnung bei Auswahl „N“ oder „E“ bei Zündschutzart

Possible marking when "N" or "E" is selected for type of protection

Ex	2G Ex eb IIC T6 ... T1 Gb oder/oder II 2G Ex eb IIC+CH4 T6 ... T1 Gb
Ex	2D Ex ib IIC TX °C Db
Ex	3G Ex na IIC T6 ... T1 Gc X oder/oder II 3G Ex na IIC+CH4 T6 ... T1 Gc X
Ex	3G Ex ec IIC T6 ... T1 Gc X oder/oder II 3G Ex ec IIC+CH4 T6 ... T1 Gc X
Ex	3D Ex Ic IIC TX °C Dc X

(4) EG-Baumusterprüfbescheinigung TÜV 10 ATEX 555793 X von TÜV NORD CERT GmbH, D-45141 Essen (Reg.-Nr. 0044).
(5) EU-Baumusterprüfbescheinigung TÜV 18 ATEX 213392 X von TÜV NORD CERT GmbH, D-45141 Essen (Reg.-Nr. 0044).

Interna Fertigungskontrolle / Internal control of production

WIKI, Alexander Wiegand SE & Co. KG
Alexander-Wiegand-Straße 30
63911 Kirchhöbi, Germany

Tel. +49 03 73 132 0
Fax +49 03 73 132 406
E-Mail worth@wikia.de
www.wikia.de

Handelsregister: Krefeld HRB 1919
Kundenpflegeservice: Amazon.de

EU-Konformitätsbescheinigung

HRA 4683

Komplettierende Angaben

14073045.05 12/2019 EN/DE

WIKA operating instructions model TR25 (Ex i)
EU-Konformitätserklärung

EU Declaration of Conformity

<table>
<thead>
<tr>
<th>Artikelnummer</th>
<th>Typbezeichnung</th>
<th>Datenblatt Data sheet</th>
<th>Artikelnummer</th>
<th>Typbezeichnung</th>
<th>Datenblatt Data sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE 61.01</td>
<td>TR10-0</td>
<td>TE 66.01</td>
<td>TC10-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR TR10</td>
<td>TR10-1</td>
<td>BR TC10</td>
<td>TC10-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR TR10</td>
<td>TR10-2</td>
<td>BR TC10</td>
<td>TC10-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 60.01</td>
<td>TR10-A</td>
<td>TE 65.01</td>
<td>TC10-A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 60.02</td>
<td>TR10-B</td>
<td>TE 65.02</td>
<td>TC10-B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 60.03</td>
<td>TR10-C</td>
<td>TE 65.03</td>
<td>TC10-C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 60.04</td>
<td>TR10-D</td>
<td>TE 65.04</td>
<td>TC10-D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 60.06</td>
<td>TR10-F</td>
<td>TE 65.06</td>
<td>TC10-F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 60.08</td>
<td>TR10-H</td>
<td>TE 65.08</td>
<td>TC10-H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 60.10</td>
<td>TR10-J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 60.11</td>
<td>TR10-K</td>
<td>TE 65.11</td>
<td>TC10-K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 60.13</td>
<td>TR11-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 60.14</td>
<td>TR11-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 60.20</td>
<td>TR20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 60.22</td>
<td>TR22-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 60.23</td>
<td>TR22-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 60.25</td>
<td>TR25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 60.40</td>
<td>TR40</td>
<td>TE 65.40</td>
<td>TC40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 60.50</td>
<td>TR50</td>
<td>TE 65.50</td>
<td>TC50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 60.63</td>
<td>TR53</td>
<td>TE 65.53</td>
<td>TC53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 60.66</td>
<td>TR55</td>
<td>TE 65.55</td>
<td>TC56</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE 65.58</td>
<td>TC59-W</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE 65.59</td>
<td>TC59-V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR80.60</td>
<td>TR80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 60.81</td>
<td>TR81</td>
<td>TE 66.81</td>
<td>TC81</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE 65.90</td>
<td>TC90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 70.01</td>
<td>TR95</td>
<td>TE 70.01</td>
<td>TC95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 64.01</td>
<td>TR17-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 64.17</td>
<td>TR17-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2: EPL matrix

EPL matrix

<table>
<thead>
<tr>
<th>Model</th>
<th>Ex ia, Ex ib, Ex ic</th>
<th>Ex eb, Ex ec, Ex tb, Ex tc, Ex nA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ga</td>
<td>Da</td>
</tr>
<tr>
<td>TR25</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Excerpt from “CA-HLP TRxx,TCxx EPL Matrix” (14317278.02, 2019-10-07)
Inhalt

1. Allgemeines 36
2. Sicherheit 37
3. Technische Daten 42
4. Aufbau und Funktion 43
5. Transport, Verpackung und Lagerung 46
6. Inbetriebnahme, Betrieb 47
7. Hinweise zu Montage und Betrieb im explosionsgefährdeten Bereich (Europa) 47
8. Zusätzliche Hinweise für Geräte mit EHEDG und 3-A 55
9. Elektrische Anschlusswerte 56
10. Berechnungsbeispiele für die Eigenerwärmung des Rohrkörpers an der Sensoreinbaustelle 58
11. Wartung und Reinigung 59
12. Störungen 60
13. Demontage, Rücksendung und Entsorgung 61
Anlage 1: EU-Konformitätserklärung 62
Anlage 2: EPL-Matrix 65

Konformitätserklärungen finden Sie online unter www.wika.de.
1. Allgemeines

Diese Betriebsanleitung gibt wichtige Hinweise zum Umgang mit dem Gerät. Voraussetzung für sicheres Arbeiten ist die Einhaltung aller angegebenen Sicherheitshinweise und Handlungsanweisungen.

Die für den Einsatzbereich des Gerätes geltenden örtlichen Unfallverhütungsvorschriften und allgemeinen Sicherheitsbestimmungen einhalten.

Die Betriebsanleitung ist Produktbestandteil und muss in unmittelbarer Nähe des Gerätes für das Fachpersonal jederzeit zugänglich aufbewahrt werden.

Das Fachpersonal muss die Betriebsanleitung vor Beginn aller Arbeiten sorgfältig durchgelesen und verstanden haben.

Die Haftung des Herstellers erlischt bei Schäden durch bestimmungswidrige Verwendung, Nichtbeachten dieser Betriebsanleitung, Einsatz ungenügend qualifizierten Fachpersonals sowie eigenmächtiger Veränderung am Gerät.

Es gelten die allgemeinen Geschäftsbedingungen in den Verkaufsunterlagen.

Technische Änderungen vorbehalten.

Weitere Informationen:
- Internet-Adresse: www.wika.de / www.wika.com
- zugehöriges Datenblatt: TE 60.25
- Anwendungsberater: Tel.: +49 9372 132-0
 Fax: +49 9372 132-406
 info@wika.de

Symbolerklärung

WARNUNG!
... weist auf eine möglicherweise gefährliche Situation hin, die zum Tod oder zu schweren Verletzungen führen kann, wenn sie nicht gemieden wird.

VORSICHT!
... weist auf eine möglicherweise gefährliche Situation hin, die zu geringfügigen oder leichten Verletzungen bzw. Sach- und Umweltschäden führen kann, wenn sie nicht gemieden wird.

Information
... hebt nützliche Tipps und Empfehlungen sowie Informationen für einen effizienten und störungsfreien Betrieb hervor.
GEFAHR!
… kennzeichnet Gefährdungen durch elektrischen Strom. Bei Nichtbeachtung der Sicherheitshinweise besteht die Gefahr schwerer oder tödlicher Verletzungen.

WARNUNG!
… weist auf eine möglicherweise gefährliche Situation im explosionsgefährdeten Bereich hin, die zum Tod oder zu schweren Verletzungen führen kann, wenn sie nicht gemieden wird.

WARNUNG!
… weist auf eine möglicherweise gefährliche Situation hin, die durch heiße Oberflächen oder Flüssigkeiten zu Verbrennungen führen kann, wenn sie nicht gemieden wird.

2. Sicherheit

WARNUNG!
Vor Montage, Inbetriebnahme und Betrieb sicherstellen, dass das richtige Thermometer hinsichtlich Ausführung und spezifischen Messbedingungen ausgewählt wurde.

Vor Montage, Inbetriebnahme und Betrieb sicherstellen, dass der verwendete Schutzrohrwerkstoff gegenüber dem Messmedium chemisch beständig/neutral ist, sowie den prozessseitigen mechanischen Belastungen standhält.

Bei Nichtbeachten können schwere Körpervverletzungen und/oder Sachschäden auftreten.

Weitere wichtige Sicherheitshinweise befinden sich in den einzelnen Kapiteln dieser Betriebsanleitung.

2.1 Bestimmungsgemäße Verwendung
Widerstandsthermometer zur Messung der Temperatur in Prozessen mit höchsten hygienischen Anforderungen, in explosionsgefährdeten Bereichen. Thermometer dieser Typen werden eingesetzt, wenn ein in das Prozessmedium eintauchendes Schutzrohr nicht möglich oder nicht gewünscht ist.

Das Gerät ist ausschließlich für den hier beschriebenen bestimmungsgemäßen Verwendungszweck konzipiert und konstruiert und darf nur dementsprechend verwendet werden.

Die technischen Spezifikationen in dieser Betriebsanleitung sind einzuhalten. Eine unsachgemäße Handhabung oder ein Betreiben des Gerätes außerhalb der technischen Spezifikationen macht die sofortige Stilllegung und Überprüfung durch einen autorisierten WIKA-Servicemitarbeiter erforderlich.
Wird das Gerät von einer kalten in eine warme Umgebung transportiert, so kann durch Kondensatbildung eine Störung der Gerätefunktion eintreten. Vor einer erneuten Inbetriebnahme die Angleichung der Gerätetemperatur an die Raumtemperatur abwarten.

Ansprüche jeglicher Art aufgrund von nicht bestimmungsgemäßer Verwendung sind ausgeschlossen.

2.2 Personalqualifikation

WARNUNG!
Verletzungsgefahr bei unzureichender Qualifikation!

Unsachgemäßer Umgang kann zu erheblichen Personen- und Sachschäden führen.
- Die in dieser Betriebsanleitung beschriebenen Tätigkeiten nur durch Fachpersonal nachfolgend beschriebener Qualifikation durchführen lassen.
- Unqualifiziertes Personal von den Gefahrenbereichen fernhalten.

Fachpersonal

Das Fachpersonal ist aufgrund seiner fachlichen Ausbildung, seiner Kenntnisse der Mess- und Regelungstechnik und seiner Erfahrungen sowie Kenntnis der landesspezifischen Vorschriften, geltenden Normen und Richtlinien in der Lage, die beschriebenen Arbeiten auszuführen und mögliche Gefahren selbstständig zu erkennen.

Spezielle Einsatzbedingungen verlangen weiteres entsprechendes Wissen, z. B. über aggressive Medien.

2.3 Zusätzliche Sicherheitshinweise für Geräte nach ATEX und IECEx

WARNUNG!

Die Nichtbeachtung dieser Inhalte und Anweisungen kann zum Verlust des Explosionsschutzes führen.

WARNUNG!

Anforderungen der ATEX-Richtlinie und IECEx beachten.

2.4 Sicherheitshinweise für innendruckbeaufschlagte Schutzrohre und Messgeräte

WARNUNG!

- Vor dem Einbau die Eignungsprüfung für die jeweilige Anwendung durch den Anwender vornehmen.
- Die Schutzrohre bzw. Messgeräte müssen gegen die Prozessstoffe chemisch und mechanisch beständig sein und mindestens die gleiche mechanische Festigkeit (Druckstufe) wie der Behälter oder die Rohrleitung aufweisen.
- Die Schutzrohre bzw. Messgeräte sind nicht für abrasiven Medien geeignet.
- Den Ein-/Ausbau nur im drucklosen Zustand vornehmen. Vorsicht vor heißen Oberflächen und Restmedien!
2. Sicherheit

■ Zulässige Druck- und Temperaturgrenzen für Betrieb und Umgebung beachten und einhalten.
■ Die vom Hersteller zulässige Umgebungstemperatur nicht überschreiten.
■ Die Festlegung geeigneter Wartungen und Inspektionsintervalle ist abhängig vom Einsatzfall und ist durch den Anwender festzulegen.
■ Zur Montage der jeweiligen Verschraubungsnorm entsprechend geeignete Schrauben, Muttern, etc. verwenden.
■ Zur Gewährleistung der erforderlichen Dichtheit und einwandfreien Funktion, geeignete Dichtungen bei der Montage verwenden.
■ Der Anbau der Schutzrohre bzw. Messgeräte an den Behälter/Rohrleitung hat dauerhaft technisch dicht zu erfolgen.

2.5 Besondere Gefahren

WARNUNG!
Die Angaben der geltenden Baumusterprüfbescheinigung sowie die jeweiligen landesspezifischen Vorschriften zur Installation und Einsatz in explosionsgefährdeten Bereichen (z. B. IEC 60079-14, NEC, CEC) einhalten. Bei Nichtbeachten können schwere Körperverletzungen und/oder Sachschäden auftreten.

Weitere wichtige Sicherheitshinweise für Geräte mit ATEX-Zulassung siehe Kapitel 2.3 „Zusätzliche Sicherheitshinweise für Geräte nach ATEX“.

WARNUNG!
Bei gefährlichen Messstoffen wie z. B. Sauerstoff, Acetylen, brennbaren oder giftigen Stoffen, sowie bei Kälteanlagen, Kompressoren etc. müssen über die gesamten allgemeinen Regeln hinaus die einschlägigen Vorschriften beachtet werden.

WARNUNG!
Schutz vor elektrostatischer Entladung (ESD) erforderlich!
Die ordnungsgemäße Verwendung geerdeter Arbeitsflächen und persönlicher Armbänder ist bei Arbeiten mit offenen Schaltkreisen (Leiterplatten) erforderlich, um die Beschädigung empfindlicher elektronischer Bauteile durch elektrostatische Entladung zu vermeiden.

Für ein sicheres Arbeiten am Gerät muss der Betreiber sicherstellen,
■ dass eine entsprechende Erste-Hilfe-Ausrüstung vorhanden ist und bei Bedarf jederzeit Hilfe zur Stelle ist.
■ dass das Bedienpersonal regelmäßig in allen zutreffenden Fragen von Arbeitssicherheit, Erste-Hilfe und Umweltschutz unterwiesen wird, sowie die Betriebsanleitung und insbesondere die darin enthaltenen Sicherheitshinweise kennt.
2. Sicherheit

GEFAHR!
Lebensgefahr durch elektrischen Strom
Bei Berührung mit spannungsführenden Teilen besteht unmittelbare Lebensgefahr.
■ Einbau und Montage des Gerätes dürfen nur durch Fachpersonal erfolgen.
■ Bei Betrieb mit einem defekten Netzgerät (z. B. Kurzschluss von Netzspannung zur Ausgangsspannung) können am Gerät lebensgefährliche Spannungen auftreten!

WARNUNG!
Messstoffreste im ausgebauten Gerät können zur Gefährdung von Personen, Umwelt und Einrichtung führen.
Ausreichende Vorsichtsmaßnahmen ergreifen.

Am Gerät können im Fehlerfall aggressive Medien mit extremer Temperatur und unter hohem Druck oder Vakuum anliegen.

GEFAHR!
Auf ausreichende Erdung des Schutzrohres achten.
2. Sicherheit

2.6 Beschilderung, Sicherheitskennzeichnungen

Typenschild (Beispiel)

Zusätzliche Angaben für Ex-Geräte

1. Typ
2. Herstellungsjahr
3. Seriennummer
4. Transmittertyp (nur bei Ausführung mit Transmitter)
5. Angaben zur Ausführung (Meeselement, Ausgangssignal, Messbereich...)
 - Sensor gemäß Norm:
 F (Dünnfilm-Messwiderstand)
6. Zulassungsrelevante Daten

Vor Montage und Inbetriebnahme des Gerätes unbedingt die Betriebsanleitung lesen!
3. Technische Daten

<table>
<thead>
<tr>
<th>Technische Daten</th>
<th>Typ TR25</th>
</tr>
</thead>
</table>
| **Temperaturbereich** | ■ Klasse A
■ Klasse B
-30 ... +150 °C (-22 ... +302 °F)
-50 ... +150 °C (-58 ... +302 °F) |
| **Sensor** | ■ Messelement
(Messstrom: 0,1 ... 1,0 mA)
■ Schaltungsart
Pt100 (Dünnschicht)
1 x 3-Leiter
1 x 4-Leiter |
| **Klassengenauigkeit des Sensors nach IEC 60751**| Klasse A
Klasse B |
| **Werkstoffe** | ■ Messstoffberührte Teile
■ Halsrohr
■ Rohrkörper
■ Dichtung (Option)
CrNi-Stahl 1.4435, 316L
CrNi-Stahl
CrNi-Stahl 1.4435, 316L
NBR, PTFE oder EPDM |
| **Oberflächen** | Standard: $R_a \leq 0,76 \, \mu m$
Option: $R_a \leq 0,38 \, \mu m$
Die messstoffberührten Oberflächen können zusätzlich elektropoliert werden. |
| **Standard-Halslänge** | 50 mm |
| **Standard-Halsrohrdurchmesser** | 12 mm |
| **Prozessanschlüsse** | ■ Anschluss für Rohre nach DIN 11866 Reihe A, B, C
■ Clamp nach DIN 32676
■ Verschraubung nach DIN 11851
■ Verschraubung nach DIN 11864-1 Form A
■ Verschraubung NEUMO BioConnect® |
| **Zulässige Umgebungstemperatur** | ■ ohne Transmitter
■ mit Transmitter
-40 ... +80 °C
siehe Betriebsanleitung des entsprechenden Transmitters |

Druckgeräterichtlinie

- Bei Geräten mit Nennweiten ≤ DN 25 (1") ist eine EU-Konformitätsbewertung nach Druckgeräterichtlinie (DGRL) nicht zulässig.
- Geräte mit Nennweiten ≤ DN 25 (1") und damit ohne CE-Kennzeichnung werden nach geltender guter Ingenieurpraxis (PED Artikel 4, Absatz 3) ausgelegt und hergestellt.
- Bei Geräten > DN 25 (1") und der damit verbundenen Kennzeichnung auf dem Messgerät bzw. Schutzrohr bestätigt WIKA die Konformität mit der Druckgeräterichtlinie nach Konformitätsbewertungsverfahren Modul H.

Weitere technische Daten siehe WIKA-Datenblatt TE 60.25 und Bestellunterlagen.
4. Aufbau und Funktion

4.1 Beschreibung
Dieses Widerstandsthermometer ermöglicht durch unterschiedlichste Prozessanschlüsse eine problemlose Anbindung an die verschiedensten Prozesse.

Als Sensoren dienen Platin-Messwiderstände in den Genauigkeitsklassen A und B nach DIN EN 60751 in 3- oder 4-Leiter-Schaltung.

Im Anschlusskopf eingebaute Transmitter (analog oder digital) sind in der Lage, verschiedenste Ausgangssignale wie 4 ... 20 mA, HART®-Protokoll, FOUNDATION™ Fieldbus oder PROFIBUS® PA zur Verfügung zu stellen.

4.2 Abmessungen in mm

- Ausführung mit Clampanschluss
4. Aufbau und Funktion

Clamp nach DIN 32676 für Rohre nach DIN 11866, Reihe A

<table>
<thead>
<tr>
<th>DN</th>
<th>Für Rohr</th>
<th>Abmessungen</th>
<th>PN 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Außen-Ø x Wandstärke</td>
<td>Ø D₁</td>
<td>L</td>
</tr>
<tr>
<td>10</td>
<td>13 x 1,5</td>
<td>10</td>
<td>71</td>
</tr>
<tr>
<td>15</td>
<td>19 x 1,5</td>
<td>16</td>
<td>71</td>
</tr>
<tr>
<td>20</td>
<td>23 x 1,5</td>
<td>20</td>
<td>71</td>
</tr>
<tr>
<td>25</td>
<td>28 x 1</td>
<td>26</td>
<td>71</td>
</tr>
<tr>
<td>32</td>
<td>34 x 1</td>
<td>32</td>
<td>71</td>
</tr>
<tr>
<td>40</td>
<td>40 x 1</td>
<td>38</td>
<td>71</td>
</tr>
<tr>
<td>50</td>
<td>52 x 1</td>
<td>50</td>
<td>71</td>
</tr>
</tbody>
</table>

Clamp nach DIN 32676 für Rohre nach DIN 11866 Reihe B (ISO 1127)

<table>
<thead>
<tr>
<th>DN</th>
<th>Für Rohr</th>
<th>Abmessungen</th>
<th>PN 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Außen-Ø x Wandstärke</td>
<td>Ø D₁</td>
<td>L</td>
</tr>
<tr>
<td>8</td>
<td>13,5 x 1,6</td>
<td>10,3</td>
<td>71</td>
</tr>
<tr>
<td>10</td>
<td>17,2 x 1,6</td>
<td>14,0</td>
<td>71</td>
</tr>
<tr>
<td>15</td>
<td>21,3 x 1,6</td>
<td>18,1</td>
<td>71</td>
</tr>
<tr>
<td>20</td>
<td>26,9 x 1,6</td>
<td>23,7</td>
<td>71</td>
</tr>
<tr>
<td>25</td>
<td>33,7 x 2</td>
<td>29,7</td>
<td>71</td>
</tr>
<tr>
<td>32</td>
<td>42,4 x 2</td>
<td>38,4</td>
<td>71</td>
</tr>
<tr>
<td>40</td>
<td>48,3 x 2</td>
<td>44,3</td>
<td>71</td>
</tr>
</tbody>
</table>

Clamp nach DIN 32676 für Rohre nach DIN 11866 Reihe C (ASME BPE)

<table>
<thead>
<tr>
<th>DN</th>
<th>Für Rohr</th>
<th>Abmessungen</th>
<th>PN 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Außen-Ø x Wandstärke</td>
<td>Ø D₁</td>
<td>L</td>
</tr>
<tr>
<td>¾"</td>
<td>19,05 x 1,65</td>
<td>15,75</td>
<td>71</td>
</tr>
<tr>
<td>1"</td>
<td>25,4 x 1,65</td>
<td>22,1</td>
<td>71</td>
</tr>
<tr>
<td>1½"</td>
<td>38,1 x 1,65</td>
<td>34,8</td>
<td>71</td>
</tr>
<tr>
<td>2"</td>
<td>50,8 x 1,65</td>
<td>47,5</td>
<td>71</td>
</tr>
</tbody>
</table>

Tri-Clamp für Rohre nach BS4825 Part 3 und O.D.-Tube

<table>
<thead>
<tr>
<th>DN</th>
<th>Für Rohr</th>
<th>Abmessungen</th>
<th>PN 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Außen-Ø x Wandstärke</td>
<td>Ø D₁</td>
<td>L</td>
</tr>
<tr>
<td>½"</td>
<td>12,7 x 1,6</td>
<td>9,5</td>
<td>71</td>
</tr>
<tr>
<td>¾"</td>
<td>19,05 x 1,6</td>
<td>15,85</td>
<td>71</td>
</tr>
<tr>
<td>1"</td>
<td>25,4 x 1,6</td>
<td>22,2</td>
<td>71</td>
</tr>
<tr>
<td>1½"</td>
<td>38,1 x 1,6</td>
<td>34,9</td>
<td>71</td>
</tr>
<tr>
<td>2"</td>
<td>50,8 x 1,6</td>
<td>47,6</td>
<td>71</td>
</tr>
</tbody>
</table>

1) Für den maximalen Druckbereich die Druckstufe der Clampklammer beachten.
2) Maximale Betriebstemperatur 150 °C
3) Alle innendruckbeaufschlagte Schutzrohre dieser Typenreihe mit einem Nenndurchmesser (DN) größer 25 mm werden nach Modul H der Druckgeräterichtlinie gefertigt und geprüft.
4. Aufbau und Funktion

- Ausführung mit Gewindeanschluss

Gewinde nach DIN 11851

Gewinde NEUMO BioConnect®

<table>
<thead>
<tr>
<th>DN</th>
<th>Für Rohr</th>
<th>Abmessungen</th>
<th>PN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Außen-Ø x Wandstärke</td>
<td>Ø D</td>
<td>G</td>
</tr>
<tr>
<td>10</td>
<td>13 x 1,5</td>
<td>10</td>
<td>Rd 28 x 1/8</td>
</tr>
<tr>
<td>15</td>
<td>19 x 1,5</td>
<td>16</td>
<td>Rd 34 x 1/6</td>
</tr>
<tr>
<td>20</td>
<td>23 x 1,5</td>
<td>20</td>
<td>Rd 44 x 1/6</td>
</tr>
<tr>
<td>25</td>
<td>29 x 1,5</td>
<td>26</td>
<td>Rd 52 x 1/6</td>
</tr>
<tr>
<td>32</td>
<td>35 x 1,5</td>
<td>32</td>
<td>Rd 58 x 1/6</td>
</tr>
<tr>
<td>40</td>
<td>41 x 1,5</td>
<td>38</td>
<td>Rd 65 x 1/6</td>
</tr>
<tr>
<td>50</td>
<td>53 x 1,5</td>
<td>50</td>
<td>Rd 78 x 1/6</td>
</tr>
<tr>
<td>65</td>
<td>70 x 2</td>
<td>66</td>
<td>Rd 95 x 1/6</td>
</tr>
</tbody>
</table>

Gewinde NEUMO BioConnect® für Rohre nach DIN 11866 Reihe A

<table>
<thead>
<tr>
<th>DN</th>
<th>Für Rohr</th>
<th>Abmessungen</th>
<th>PN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Außen-Ø x Wandstärke</td>
<td>Ø D</td>
<td>G</td>
</tr>
<tr>
<td>15</td>
<td>19 x 1,5</td>
<td>16</td>
<td>M30 x 1,5</td>
</tr>
<tr>
<td>20</td>
<td>23 x 1,5</td>
<td>20</td>
<td>M36 x 2</td>
</tr>
<tr>
<td>25</td>
<td>29 x 1,5</td>
<td>26</td>
<td>M42 x 2</td>
</tr>
<tr>
<td>32</td>
<td>35 x 1,5</td>
<td>32</td>
<td>M52 x 2</td>
</tr>
<tr>
<td>40</td>
<td>41 x 1,5</td>
<td>38</td>
<td>M56 x 2</td>
</tr>
<tr>
<td>50</td>
<td>53 x 1,5</td>
<td>50</td>
<td>M86 x 2</td>
</tr>
<tr>
<td>65</td>
<td>70 x 2</td>
<td>66</td>
<td>M90 x 3</td>
</tr>
</tbody>
</table>

Gewinde NEUMO BioConnect® für Rohre nach DIN 11866 Reihe B (ISO 1127)

<table>
<thead>
<tr>
<th>DN</th>
<th>Für Rohr</th>
<th>Abmessungen</th>
<th>PN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Außen-Ø x Wandstärke</td>
<td>Ø D</td>
<td>G</td>
</tr>
<tr>
<td>15</td>
<td>21,3 x 1,6</td>
<td>18,1</td>
<td>M30 x 1,5</td>
</tr>
<tr>
<td>20</td>
<td>26,9 x 1,6</td>
<td>23,7</td>
<td>M36 x 2</td>
</tr>
<tr>
<td>25</td>
<td>33,7 x 2</td>
<td>29,7</td>
<td>M42 x 2</td>
</tr>
<tr>
<td>32</td>
<td>42,4 x 2</td>
<td>38,4</td>
<td>M52 x 2</td>
</tr>
<tr>
<td>40</td>
<td>48,3 x 2</td>
<td>44,3</td>
<td>M56 x 2</td>
</tr>
<tr>
<td>50</td>
<td>60,3 x 2</td>
<td>56,3</td>
<td>M86 x 2</td>
</tr>
<tr>
<td>65</td>
<td>76,1 x 2,3</td>
<td>71,5</td>
<td>M90 x 3</td>
</tr>
</tbody>
</table>

2) Maximale Betriebstemperatur 150 °C
3) Alle innendruckbeaufschlagte Schutzrohre dieser Typenreihe mit einem Nenndurchmesser (DN) größer 25 mm werden nach Modul H der Druckgeräterichtlinie gefertigt und geprüft.

Flanschanschlüsse, Klemmverbindungen und weitere Nennweiten auf Anfrage.
4. Aufbau und Funktion / 5. Transport, Verpackung, Lagerung

4.3 Lieferumfang
Lieferumfang mit dem Lieferschein abgleichen.

5. Transport, Verpackung und Lagerung

5.1 Transport
Das Gerät auf eventuell vorhandene Transportschäden untersuchen. Offensichtliche Schäden unverzüglich mitteilen und beschädigte Geräte nicht verwenden.

5.2 Verpackung
Verpackung erst unmittelbar vor der Montage entfernen. Die Verpackung aufbewahren, denn diese bietet bei einem Transport einen optimalen Schutz (z. B. wechselnder Einbauort, Reparatursendung).

5.3 Lagerung
Zulässige Bedingungen am Lagerort:
■ Lagertemperatur: 0 ... 70 °C
■ Feuchtigkeit: 35 ... 85 % relative Feuchte (keine Betauung)

Folgende Einflüsse vermeiden:
■ Direktes Sonnenlicht oder Nähe zu heißen Gegenständen
■ Mechanische Vibration, mechanischer Schock (hartes Aufstellen)
■ Ruß, Dampf, Staub und korrosive Gase
■ Explosionsgefährdete Umgebung, entzündliche Atmosphären

Das Gerät in der Originalverpackung an einem Ort lagern, der die oben gelisteten Bedingungen erfüllt. Wenn die Originalverpackung nicht vorhanden ist, dann das Gerät wie folgt verpacken und lagern:
1. Das Gerät in eine antistatische Plastikfolie einhüllen.
2. Das Gerät mit dem Dämmmaterial in der Verpackung platzieren.
3. Bei längerer Einlagerung (mehr als 30 Tage) einen Beutel mit Trocknungsmittel der Verpackung beilegen.

WARNUNG!
Vor der Einlagerung des Gerätes (nach Betrieb) alle anhaftenden Messstoffreste entfernen. Dies ist besonders wichtig, wenn der Messstoff gesundheitsgefährdend ist, wie z. B. ätzend, giftig, krebserregend, radioaktiv, usw.
6. Inbetriebnahme, Betrieb

VORSICHT!
Widerstandsthermometer nach unten einbauen, wenn eine horizontale Rohrleit-
tung im Betrieb nur unvollständig gefüllt ist.
Vor Inbetriebnahme das Schutzrohr entsprechend den Reinigungsvorschriften
der Anlage reinigen.

WARNUNG!
Geeignetes Dichtungsmaterial verwenden. Die Dichtheit muss vom Anlagenbe-
treiber regelmäßig überprüft werden.

Ein Verbiegen oder Anpassen des Schutzrohres zur Montage ist nicht zulässig. Der Einbau
hat so zu erfolgen, dass Beschädigungen des Schutzrohres durch den Anlagenbetrieb
oder den Anwender ausgeschlossen werden. Gegebenenfalls ist dafür eine über die unten
beschriebene hinausgehende Befestigung des Schutzrohres/der Rohrleitung (z. B. mit
Rohrschellen) notwendig. Insbesondere der Hals ist durch geeignete Maßnahmen vor
Abknicken zu schützen.

7. Hinweise zu Montage und Betrieb im explosionsgefährde-
ten Bereich (Europa)

7.1 Allgemeine Hinweise zum Explosionsschutz

Die Anforderungen der ATEX-Richtlinie sowie der IEC beachten.
Zusätzlich gelten die Angaben der jeweiligen Landesvorschriften bezüglich des
Einsatzes in explosionsgefährdeten Umgebung.

A) Die Verantwortung über die Zoneneinteilung unterliegt dem Anlagenbetreiber und nicht
dem Hersteller/Lieferanten der Betriebsmittel.

B) Der Betreiber der Anlage stellt in eigener Verantwortung sicher, dass vollständige und
im Einsatz befindliche Thermometer bezüglich aller sicherheitsrelevanten Merkmale
identifizierbar sind. Beschädigte Thermometer dürfen nicht verwendet werden. Instand-
setzungen (Reparaturen) dürfen nur von dafür autorisierten Personen durchgeführt
werden. Reparaturen dürfen nur mit Originalersatzteilen des Ursprungslieferanten
durchgeführt werden, da ansonsten die Anforderungen der Zulassung nicht erfüllt sind.
Bauliche Veränderungen nach Auslieferung der Geräte obliegen nicht in der Verantwor-
tung des Herstellers.

C) Ist eine Komponente eines elektrischen Betriebsmittels, von dem der Explosionsschutz
abhängt, instandgesetzt worden, so darf das elektrische Betriebsmittel erst wieder in
Betrieb genommen werden, nachdem der Sachverständige festgestellt hat, dass es in
den für den Explosionsschutz wesentlichen Merkmalen den Anforderungen entspricht.
Außerdem muss der Sachverständige hierfür eine Bescheinigung erstellen und das
Betriebsmittel mit einem Prüfzeichen versehen.
D) Punkt C) gilt dann nicht, wenn die Komponente durch den Hersteller entsprechend den Anforderungen und Bestimmungen instandgesetzt wurde.

E) Bei Einsatz von Transmittern und Digitalanzeigen ist zu beachten:
- Der Inhalt dieser und der zum Transmitter oder Anzeige gehörenden Betriebsanleitung.
- Die einschlägigen Bestimmungen für Errichtung und Betrieb elektrischer Anlagen.
- Die Verordnungen und Richtlinien für den Explosionsschutz. Transmitter und Digitalanzeigen müssen eine eigene Zulassung besitzen.

F) Bei Ersatzteilbestellung muss eine genaue Angabe über die Vorlieferung erfolgen:
- Zündschutzart (hier Ex i)
- Zulassungs-Nr.
- Auftrags-Nr.
- Fertigungs-Nr.
- Auftragsposition

7.1.1 Besondere Bedingungen für die Verwendung (X-Conditions)

An Geräten, die aufgrund Ihrer Bauart nicht den elektrostatischen Anforderungen nach IEC/EN 60079-0 entsprechen, müssen elektrostatische Aufladungen vermieden werden.

Eingesetzte Transmitter/Digitalanzeigen müssen eine eigene Bescheinigung entsprechend IEC/EN besitzen. Es sind die Installationsbedingungen, die elektrischen Anschlussgrößen, die Temperaturklassen bzw. maximalen Oberflächentemperaturen bei Geräten zur Verwendung in explosionsfähigen Staubatmosphären und zulässigen Umgebungstemperaturen den entsprechenden Zulassungen zu entnehmen und einzuhalten.

Ein Wärmerückfluss aus dem Prozess welcher die zulässige Umgebungstemperatur des Transmitters, der Digitalanzeige oder des Gehäuses überschreitet, ist nicht zulässig und durch geeignete Wärmeisolierung oder ein entsprechend langes Halsrohr zu verhindern.

Falls die Wandstärke unter 1 mm liegt, dürfen die Geräte keinen Umgebungsbeanspruchungen ausgesetzt werden, die die Trennwand nachteilig beeinträchtigen können. Alternativ kann ein Schutzrohr mit entsprechender Mindestwandstärke eingesetzt werden.

Bei Verwendung eines Schutzrohres/Halsrohres muss das Gesamtgerät so konstruiert sein, dass ein Einbau in einer Art möglich ist, die zu einem genügend dichten Spalt (IP67) oder einem flammendurchschlagsicheren Spalt (IEC/EN 60079-1) hin zum weniger gefährdeten Bereich führt.

Schutzmaßnahmen für Anwendungen die EPL Ga oder Da erfordern:
Betriebsbedingte Reibung oder Stöße zwischen Geräteteilen aus Leichtmetall oder deren Legierungen (z. B. Aluminium, Magnesium, Titanium oder Zirkonium) mit Geräteteilen aus Eisen/Stahl sind nicht zulässig. Betriebsbedingte Reibungen oder Stöße zwischen Leichtmetallen sind erlaubt.

7.1.2 Ex-Kennzeichnung

Für Anwendungen ohne Transmitter (Digitalanzeigen) die Geräte der Gerätegruppe II (explosionsfähige Gasatmosphären) erfordern gelten folgende Temperaturklasseneinteilung und Umgebungstemperaturbereiche:

Tabelle 1

<table>
<thead>
<tr>
<th>Kennzeichnung</th>
<th>Temperaturklasse</th>
<th>Umgebungs-temperaturbereich (T_a)</th>
<th>Max. Oberflächentemperatur (T_{max}) an der Fühler- oder Schutzrohrspitze</th>
</tr>
</thead>
<tbody>
<tr>
<td>II 1G Ex ia IIC T6 Ga</td>
<td>T6</td>
<td>(-50)°C - 40°C ... +80°C</td>
<td>T_M (Mediumtemperatur) + Eigenerwärmung</td>
</tr>
<tr>
<td>II 1/2G Ex ib IIC T6 Ga/Gb</td>
<td>T5</td>
<td>(-50)°C - 40°C ... +80°C</td>
<td></td>
</tr>
<tr>
<td>II 1G Ex ia IIC T5 Ga</td>
<td>T4, T3</td>
<td>(-50)°C - 40°C ... +80°C</td>
<td></td>
</tr>
<tr>
<td>II 1/2G Ex ib IIC T5 Ga/Gb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 1G Ex ia IIC T4 Ga</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 1/2G Ex ib IIC T4 Ga/Gb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 1G Ex ia IIC T3 Ga</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 1/2G Ex ib IIC T3 Ga/Gb</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beim Einbau eines Transmitters und/oder einer Digitalanzeige gelten die besonderen Bedingungen aus der Baumusterprüfbescheinigung (siehe Punkt 17).
Für Anwendungen die Geräte der Gerätegruppe II (explosionsfähige Staubatmosphären) erfordern gelten folgende Oberflächentemperaturen und Umgebungstemperaturbereiche:

Tabelle 2

<table>
<thead>
<tr>
<th>Kennzeichnung</th>
<th>Leistung P_i</th>
<th>Umgebungs-temperaturbereich (T_a)</th>
<th>Max. Oberflächentemperatur (T_{max}) an der Fühler- oder Schutzrohrspitze</th>
</tr>
</thead>
<tbody>
<tr>
<td>II 1D Ex ia IIIC T65 °C Da</td>
<td>750 mW</td>
<td>(-50) ¹) -40 ... +40 °C</td>
<td>T_M (Mediumstemperatur) + Eigenerwärmung</td>
</tr>
<tr>
<td>II 1/2D Ex ib IIIC T65 °C Da/Db</td>
<td>650 mW</td>
<td>(-50) ¹) -40 ... +70 °C</td>
<td>Hierzu sind die besonderen Bedingungen (17) zu beachten.</td>
</tr>
<tr>
<td>II 1D Ex ia IIIC T95 °C Da</td>
<td>550 mW</td>
<td>(-50) ¹) -40 ... +80 °C</td>
<td></td>
</tr>
<tr>
<td>II 1/2D Ex ib IIIC T95 °C Da/Db</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beim Einbau eines Transmitters und/oder einer Digitalanzeige gelten die besonderen Bedingungen aus der Baumusterprüfbescheinigung (siehe Punkt 17).

Verwendung in Methan-Atmosphären
Aufgrund der höheren Mindestzündenergie von Methan können die Geräte auch in dadurch verursachte explosionsfähige Gasatmosphären eingesetzt werden. Das Gerät wird optional mit IIC + CH₄ gekennzeichnet.

Für Anwendungen, die EPL Gb oder Db erfordern, können die mit „ia“ gekennzeichneten Geräte auch in Messstromkreisen des Typs „ib“ eingesetzt werden.

7.2 Temperaturklasseneinteilung, Umgebungstemperaturen
Die zulässigen Umgebungstemperaturen richten sich nach der Temperaturklasse, den eingesetzten Gehäusen und dem optional eingebauten Transmitter und/oder der Digitalanzeige.

Bei der Zusammenschaltung eines Thermometers mit einem Transmitter und/oder einer Digitalanzeige gelten der jeweils kleinste Wert der Umgebungstemperaturgrenzen und die Temperaturklasse mit der größten Ziffer. Die untere Temperaturgrenze beträgt -40 °C, für Sonderausführungen -50 °C.

 Falls kein Transmitter oder keine Digitalanzeige im Gehäuse montiert ist, findet in diesem auch keine zusätzliche Erwärmung statt. Mit eingebautem Transmitter (optional mit Digitalanzeige) kann eine Erwärmung betriebsbedingt durch den Transmitter oder Digitalanzeige stattfinden.
Für Anwendungen ohne Transmitter (Digitalanzeigen) die Geräte der Gerätegruppe II (explosionsfähige Gasatmosphären) erfordern gelten folgende Temperaturklasseneinteilung und Umgebungstemperaturbereiche:

<table>
<thead>
<tr>
<th>Temperaturklasse</th>
<th>Umgebungstemperaturbereich (T_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>(-50) -40 ... +80 °C</td>
</tr>
<tr>
<td>T5</td>
<td>(-50) -40 ... +80 °C</td>
</tr>
<tr>
<td>T4, T3</td>
<td>(-50) -40 ... +80 °C</td>
</tr>
</tbody>
</table>

Die zulässigen Umgebungstemperaturen und Oberflächentemperaturen von Fremdfabrikaten den jeweiligen Zulassungen und/oder Datenblättern entnehmen und beachten.

Beispiel

Für Geräte mit Transmitter und Digitalanzeige DIH10 gilt z. B. folgende Begrenzung der Temperaturklasseneinteilung:

<table>
<thead>
<tr>
<th>Temperaturklasse</th>
<th>Umgebungstemperaturbereich (T_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-40 ... +60 °C</td>
</tr>
</tbody>
</table>

Für Anwendungen die Geräte der Gerätegruppe II (explosionsfähige Staubatmosphären) erfordern gelten folgende Oberflächentemperaturen und Umgebungstemperaturbereiche:

<table>
<thead>
<tr>
<th>Leistung P_i</th>
<th>Umgebungstemperaturbereich (T_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>750 mW</td>
<td>(-50) -40 ... +40 °C</td>
</tr>
<tr>
<td>650 mW</td>
<td>(-50) -40 ... +70 °C</td>
</tr>
<tr>
<td>550 mW</td>
<td>(-50) -40 ... +80 °C</td>
</tr>
</tbody>
</table>

Die zulässigen Umgebungstemperaturen und Oberflächentemperaturen von Fremdfabrikaten den jeweiligen Zulassungen und/oder Datenblättern entnehmen und beachten.

Diese Thermometer sind laut Zulassung geeignet für die Temperaturklassen T6...T3. Dies gilt für Geräte ohne eingebaute Transmitter und/oder Digitalanzeigen. Thermometer mit Transmitter und/oder Digitalanzeigen sind einsetzbar in den Temperaturklassen T6...T4 und sind entsprechend gekennzeichnet. Die Verwendung eines Betriebsmittels für Anwendungen, bei denen eine niedrigere Temperaturklasse (z. B. T2) als die gekennzeichnete gefordert ist, ist zulässig. Hierbei sicherstellen, dass die maximale Umgebungstemperatur für den sicheren Betrieb des Gerätes nicht überschritten wird.
7. Hinweise zu Montage und Betrieb im Ex-Bereich (Europa)

7.3 Temperaturverschleppung aus dem Prozess
Ein Wärmerückfluss aus dem Prozess, welcher die Betriebstemperatur des Transmitters (Digitalanzeige) oder Gehäuses überschreitet, ist nicht zulässig und durch geeignete Wärmeisolierung oder ein entsprechend langes Halsrohr zu verhindern.

Erhöhung des Abstandes der Anschlusskomponenten zu heißen Oberflächen
Die Halslänge (N) ist als Abstand zwischen Unterkante Anschlusskopf oder Gehäuse zur wärmestrahlenden Oberfläche definiert. Die zu erwartende Temperatur an der Unterkante des Anschlusskopfes bzw. Gehäuses beträgt dabei maximal 80 °C. Die Bedingungen für eingebaute Transmitter oder Anzeigen sind zu berücksichtigen, gegebenenfalls ist die Halslänge entsprechend zu erhöhen.

Als Hilfestellung zur Auswahl der minimalen Halslängen wurden die folgenden Richtwerte ermittelt.

<table>
<thead>
<tr>
<th>Maximale Mediumstemperatur</th>
<th>Empfehlung für Maß N</th>
<th>Empfehlung für Maß X</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 °C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>135 °C</td>
<td>20 mm</td>
<td>20 mm</td>
</tr>
<tr>
<td>200 °C</td>
<td>50 mm</td>
<td>50 mm</td>
</tr>
<tr>
<td>> 200 °C ≤ 450 °C</td>
<td>100 mm</td>
<td>100 mm</td>
</tr>
</tbody>
</table>

WARNING!
Auch aus Gründen der Arbeitssicherheit und der Ressourcenschonung sollten heiße Oberflächen durch eine Isolierung gegen Berührung und Energieverlust geschützt werden.
7. Hinweise zu Montage und Betrieb im Ex-Bereich (Europa)

7.4 Montagebeispiele im explosionsgefährdeten Bereichen

7.4.1 Mögliche Einbaumethoden mit der Markierung II 1G Ex ia IIC T6 Ga bzw. II 1D Ex ia IIIC T65 °C Da

Der Fühler samt Gehäuse oder Anschlusskopf befindet sich in Zone 0 (Zone 20). Es ist ein Stromkreis vom Typ Ex ia zu verwenden. Anschlussköpfe/Gehäuse aus Aluminium sind in Zone 0 nicht zulässig. WIKA verwendet an dieser Stelle Anschlussköpfe/Gehäuse aus CrNi-Stahl.
7.4.2 Mögliche Einbaumethoden mit Markierung II 1/2 Ex ib IIC T6 Ga/Gb bzw. II 1/2 D Ex ib IIIC T65 °C Da/Db

Die Fühler- oder Schutzrohrspitze ragt in Zone 0 hinein. Das Gehäuse oder Anschlusskopf befindet sich in Zone 1 (Zone 21) oder Zone 2 (Zone 22). Es ist ausreichend, einen Stromkreis vom Typ Ex ib zu verwenden.

Eine Zonetrennung ist gewährleistet wenn ausreichend dichte (IP67) Prozessanschlüsse verwendet werden.

Geeignete Prozessanschlüsse sind beispielsweise gasdichte genormte Industrieflansche, Gewindeanschlüsse oder Rohranschlüsse.

Die benutzten Schweißteile, Prozessanschlüsse, Klemmverschraubungen, Schutzrohre oder Gehäuse müssen so ausgelegt sein, dass sie allen durch den Prozess entstehenden Einflüssen wie zum Beispiel Temperatur, Durchflusskräften, Druck, Korrosion, Schwingung und Stößen widerstehen.
8. Zusätzliche Hinweise für Geräte mit EHEDG und 3-A

8.1 Einhaltung der Konformität nach 3-A

8.2 Einhaltung der EHEDG-Konformität
Für eine EHEDG-konforme Anbindung Dichtungen gemäß aktuellem EHEDG-Positionspapier verwenden.

Hersteller von Dichtungen
■ Dichtung für Verbindungen nach ISO 2852, DIN 32676 und BS 4825 Part 3: z. B. Combifit International B.V.
■ Dichtung für Verbindungen nach DIN 11851: z. B. Kieselmann GmbH
■ Neumo BioConnect®-Dichtungen: z. B. Neumo GmbH & Co. KG

8.3 Montagehinweise
Nachfolgende Hinweise, insbesondere für EHEDG-zertifizierte und 3-A-konforme Geräte, beachten.

■ Zur Einhaltung der EHEDG-Zertifizierung muss ein von der EHEDG empfohlener Prozessanschluss verwendet werden.
■ Elektrisches Thermometer inklusive Schutzrohr totraumarm und leicht reinigbar montieren.
■ Einbaurahmen des elektrischen Thermometers inklusive Schutzrohr soll selbstentleerend ausgeführt sein.
■ Einbaurahmen darf keine schöpfende Stelle bilden oder eine Spülbeckenbildung verursachen.

8.4 Reinigungsprozess Cleaning-in-Place (CIP)
■ Bei Reinigung von außen („Wash Down“) zulässige Temperatur und Schutzart beachten.
■ Nur Reinigungsmittel verwenden, die für die eingesetzten Dichtungen geeignet sind.
■ Reinigungsmittel dürfen weder abrasiv sein noch die Werkstoffe der messstoffberührten Teile korrosiv angreifen.
9. Elektrische Anschlusswerte

9.1 Elektrische Daten ohne eingebauten Transmitter oder Digitalanzeige
Für Geräte der Gerätegruppe II (explosionsfähige Gasatmosphären) gelten die folgenden maximalen Anschlusswerte:

\[U_l = \text{DC} \ 30 \text{ V} \]
\[I_l = 550 \text{ mA} \]
\[P_l (\text{am Sensor} \ 1^1) = 1,5 \text{ W} \]

Für Geräte der Gerätegruppe II (explosionsfähige Staubatmosphären) gelten die folgenden maximalen Anschlusswerte:

\[U_l = \text{DC} \ 30 \text{ V} \]
\[I_l = 550 \text{ mA} \]
\[P_l (\text{am Sensor} \ 2^2) = \text{Werte siehe } \text{Tabelle 2} \ (\text{Spalte 2}), \text{Kapitel 7.1.2 “Ex-Kennzeichnung”} \]

Die innere Induktivität (\(L_i \)) und Kapazität (\(C_i \)) des TR25 sind vernachlässigbar klein.

Sensorstromkreis in Zündschutzart Eigensicherheit Ex ia, oder ib, IIC
Nur zum Anschluss an eigensichere Stromkreise mit folgenden maximalen Ausgangswerten für Geräte der Gerätegruppe II (explosionsfähige Gasatmosphären):

\[U_o = \text{DC} \ 30 \text{ V} \]
\[I_o = 550 \text{ mA} \]
\[P_o = 1,5 \text{ W} \]

Für Geräte der Gerätegruppe II (explosionsfähige Staubatmosphären) gelten bezüglich des Anschlusses an eigensichere Stromkreise die folgenden maximalen Ausgangswerte:

\[U_o = \text{DC} \ 30 \text{ V} \]
\[I_o = 550 \text{ mA} \]
\[P_o = \text{Werte siehe } \text{Tabelle 2} \ (\text{Spalte 2}), \text{Kapitel 7.1.2 “Ex-Kennzeichnung”} \]

1) Die zulässige Leistung zum Sensor ist abhängig von der Mediumstemperatur \(T_{\text{M}} \), der Temperaturklasse und des Wärmewiderstandes \(R_{\text{th}} \), höchstens jedoch 1,5 W.

Berechnungsbeispiele siehe Kapitel 10 „Berechnungsbeispiele für die Eigenerwärmung des Rohrkörpers an der Sensoreinbaustelle“.

2) Die zulässige Leistung zum Sensor ist abhängig von der Mediumstemperatur \(T_{\text{M}} \), der maximal zulässigen Oberflächentemperatur und des Wärmewiderstandes \(R_{\text{th}} \), höchstens jedoch die Werte aus „Tabelle 2“ (Spalte 2) siehe Kapitel 7.1.2 „Ex-Kennzeichnung“.

3) Verwendung in Methan-Atmosphären
Aufgrund der höheren Mindestzündenergie von Methan können die Geräte auch in dadurch verursachte explosionsfähige Gasatmosphären eingesetzt werden. Das Gerät wird optional mit IIC + CH4 gekennzeichnet.
9. Elektrische Anschlusswerte

9.2 Elektrische Daten mit eingebautem Transmitter oder Digitalanzeige
Für den Sensorstromkreis gelten die unter 8.1 genannten Werte.
Signalstromkreis in Zündschutzart Eigensicherheit Ex ia, oder ib, IIC

\[U_i = \text{abhängig vom Transmitter/Digitalanzeige} \]
\[I_i = \text{abhängig vom Transmitter/Digitalanzeige} \]
\[P_i = \text{im Gehäuse: abhängig vom Transmitter/Digitalanzeige} \]
\[C_i = \text{abhängig vom Transmitter/Digitalanzeige} \]
\[L_i = \text{abhängig vom Transmitter/Digitalanzeige} \]

Eingesetzte Transmitter/Digitalanzeigen müssen eine eigene Zertifizierung entsprechend IEC/EN besitzen. Es sind die Installationsbedingungen und elektrischen Anschlussgrößen den entsprechenden Zulassungen zu entnehmen und einzuhalten.

9.3 Elektrische Daten mit eingebautem Transmitter nach dem FISCO-Modell
10. Berechnungsbeispiele für die Eigenerwärmung des Rohrkörpers an der Sensoreinbaustelle

Rohr-In-Line-Widerstandsthermometer Typ TR25 mit eingebautem Kopftransmitter Typ T32.1S.

Die Speisung erfolgt beispielsweise über ein Messumformerspeisegerät Typ KFD2-STC4-EX1 (WIKA-Artikel-Nr. 2341268).

T_{max} ergibt sich aus der Addition der Mediumstemperatur sowie der Eigenerwärmung. Die Eigenerwärmung hängt ab von der zugeführten Leistung P_0 des Transmitters und dem Wärmewiderstand R_{th}.

Die Berechnung erfolgt nach folgender Formel: $T_{\text{max}} = P_0 \times R_{\text{th}} + T_M$

- T_{max} = Oberflächentemperatur (max. Temperatur des Rohrkörpers an der Sensoreinbaustelle)
- P_0 = aus dem Datenblatt des Transmitters
- R_{th} = Wärmewiderstand [K/W]
- T_M = Mediumstemperatur

Voraussetzung ist eine Umgebungstemperatur T_{amb} von -20 ... +40 °C.

Wärmewiderstand für den TR25 (R_{th}) 60 K/W

Beispiel

Mediumstemperatur: $T_M = 150$ °C
Zugeführte Leistung: $P_0 = 15,2$ mW

Temperaturklasse T3 (200 °C) darf nicht überschritten werden

Eigenerwärmung: $0,0152 \text{ W} \times 60 \text{ K/W} = 0,91 \text{ K}$

$T_{\text{max}} = T_M + \text{Eigenerwärmung}: 150 \text{ °C} + 0,91 \text{ °C} = 150,91 \text{ °C}$

Das Ergebnis zeigt, dass in diesem Fall die Eigenerwärmung des Rohrkörpers an der Sensoreinbaustelle vernachlässigbar klein ist.

Als Sicherheitsabstand für baumustergeprüfte Geräte (für T6 bis T3) müssen von den 200 °C noch 5 °C subtrahiert werden, es wären 195 °C zulässig. Somit wird in diesem Fall die Temperaturklasse T3 nicht überschritten.

Zusatzinformation

Temperaturklasse für T3 = 200 °C
Sicherheitsabstand für baumustergeprüfte Geräte (T6 bis T3) $= 5$ K
Sicherheitsabstand für baumustergeprüfte Geräte (T1 bis T2) $= 10$ K

1) IEC/EN 60079-0: 2009 Abs. 26.5.1
10. Berechnungsbeispiele für ... / 11. Wartung und Reinigung

Vereinfachter Nachweis der Eigensicherheit für oben genannte Kombination

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Kopftransmitter</th>
<th>Speisegerät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uᵢ: DC 30 V</td>
<td>Uₒ: DC 6,5 V</td>
<td>Uₒ: DC 25,4 V</td>
</tr>
<tr>
<td>Iᵢ: 550 mA</td>
<td>Iₒ: 9,3 mA</td>
<td>Iₒ: 88,2 mA</td>
</tr>
<tr>
<td>Pᵢ (max) am Sensor: 1,5 W</td>
<td>Pₒ: 15,2 mW</td>
<td>Pₒ: 800 mW</td>
</tr>
<tr>
<td>Cᵢ: vernachlässigbar</td>
<td>Cₒ: 24 µF</td>
<td>Cₒ: 93 nF</td>
</tr>
<tr>
<td>Lᵢ: vernachlässigbar</td>
<td>Lₒ: 365 mH</td>
<td>Lₒ: 2,7 mH</td>
</tr>
</tbody>
</table>

Durch den Vergleich der Werte ist ersichtlich dass die Zusammenschaltung dieser Geräte zulässig ist. Allerdings müssen durch den Betreiber die Werte für die Induktivität und der Kapazität der elektrischen Anschlussleitungen noch berücksichtigt werden.

11. Wartung und Reinigung

11.1 Wartung
Das hier beschriebene Widerstandsthermometer ist grundsätzlich wartungsfrei. Geeignete Intervalle sind vom Anwender abhängig von den Einsatzbedingungen festzulegen.

Reparaturen sind ausschließlich vom Hersteller oder nach Absprache durch entsprechend qualifiziertes Fachpersonal durchzuführen.

11.2 Reinigung

VORSICHT!
- Vor der Reinigung das Gerät ordnungsgemäß von der Druckversorgung trennen, ausschalten und vom Netz trennen.
- Das Gerät mit einem feuchten Tuch reinigen.
- Elektrische Anschlüsse nicht mit Feuchtigkeit in Berührung bringen.
- Ausgebautes Gerät vor der Rücksendung spülen bzw. säubern, um Personen und Umwelt vor Gefährdung durch anhaftende Messstoffreste zu schützen.

Hinweise zur Rücksendung des Gerätes siehe Kapitel 13.2 „Rücksendung“.

11.3 Kalibrierung, Rekalibrierung
12. Störungen

<table>
<thead>
<tr>
<th>Störungen</th>
<th>Ursachen</th>
<th>Maßnahmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kein Signal/Leitungsbruch</td>
<td>Zu hohe mechanische Belastung oder Übertemperatur</td>
<td>Austausch des Widerstandsthermometers</td>
</tr>
<tr>
<td>Fehlerhafte Messwerte</td>
<td>Sensordrift durch Übertemperatur</td>
<td>Austausch des Widerstandsthermometers</td>
</tr>
<tr>
<td>Fehlerhafte Messwerte (zu gering)</td>
<td>Feuchtigkeitseintritt an Kabel</td>
<td>Austausch des Widerstandsthermometers</td>
</tr>
<tr>
<td>Fehlerhafte Messwerte und zu lange Ansprechzeiten</td>
<td>Falsche Einbaugeometrie oder zu hohe Wärmeableitung</td>
<td>Der temperaturempfindliche Bereich des Sensors muss innerhalb des Mediums liegen. Einbauposition des Sensors beachten!</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ablagerungen im Schutzrohr</td>
</tr>
<tr>
<td>Anzeige des Messwertes springt</td>
<td>Leitungsbruch im Anschlusskabel oder Wackelkontakt durch mechanische Überbelastung</td>
<td>Zuleitung überprüfen</td>
</tr>
<tr>
<td>Korrosion</td>
<td>Zusammensetzung des Mediums nicht wie angenommen oder geändert oder falsches Schutzrohrmaterial gewählt</td>
<td>Medium analysieren und danach besser geeignetes Material wählen oder Schutzrohr regelmäßig erneuern</td>
</tr>
<tr>
<td>Signal gestört</td>
<td>Einstreuung durch elektrische Felder oder Erdschleifen</td>
<td>Verwendung von geschirmten Anschlussleitungen, Erhöhung des Abstandes zu Motoren und leistungsführenden Leitungen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Erdschleifen</td>
</tr>
</tbody>
</table>

VORSICHT!

Können Störungen mit Hilfe der oben aufgeführten Maßnahmen nicht beseitigt werden, ist das Gerät unverzüglich außer Betrieb zu setzen, sicherzustellen, dass kein Druck bzw. Signal mehr anliegt und gegen versehentliche Inbetriebnahme zu schützen.

In diesem Falle Kontakt mit dem Hersteller aufnehmen. Bei notwendiger Rücksendung die Hinweise siehe Kapitel 13.2 „Rücksendung“ beachten.
13. Demontage, Rücksendung und Entsorgung

13.1 Demontage

WARNUNG!
Verbrennungsgefahr!
Vor dem Ausbau das Gerät ausreichend abkühlen lassen! Beim Ausbau besteht Gefahr durch austretende, gefährlich heiße Messstoffe.

Thermometer nur im drucklosen Zustand demontieren!

13.2 Rücksendung

WARNUNG!
Beim Versand des Gerätes unbedingt beachten:
Alle an WIKA gelieferten Geräte müssen frei von Gefahrstoffen (Säuren, Laugen, Lösungen, etc.) sein.

Zur Rücksendung des Gerätes die Originalverpackung oder eine geeignete Transportverpackung verwenden.

Um Schäden zu vermeiden:
1. Das Gerät in eine antistatische Plastikfolie einhüllen.
2. Das Gerät mit dem Dämmmaterial in der Verpackung platzieren.
 Zu allen Seiten der Transportverpackung gleichmäßig dämmen.
3. Wenn möglich einen Beutel mit Trocknungsmittel der Verpackung beifügen.
4. Sendung als Transport eines hochempfindlichen Messgerätes kennzeichnen.

Das Rücksendeformular befindet sich in der Rubrik „Service“ unter www.wika.de.

13.3 Entsorgung

Durch falsche Entsorgung können Gefahren für die Umwelt entstehen.
Gerätekomponenten und Verpackungsmaterialien entsprechend den landesspezifischen Abfallbehandlungs- und Entsorgungsvorschriften umweltgerecht entsorgen.

Nicht mit dem Hausmüll entsorgen. Für eine geordnete Entsorgung gemäß nationaler Vorgaben sorgen.
Anlage 1: EU-Konformitätserklärung

EU-Konformitätserklärung
EU Declaration of Conformity

Dokument Nr.: 11570700.09

Wir erklären in alleiniger Verantwortung, dass die mit CE gekennzeichneten Produkte
We declare under our sole responsibility that the CE marked products

Typenbezeichnung: TR... (1)
Model Designation: TC... (1)

Beschreibung: Widerstandsthermometer, Thermoelemente
Description: Resistance Thermometers, Thermocouples

gemäß gültigem Datenblatt: Siehe Anhang
according to the valid data sheet: Refer to annex

die wesentlichen Schutzanforderungen der folgenden Richtlinien erfüllen: Harmonisierte Normen:
comply with the essential protection requirements of the directives: Harmonized standards:

2011/65/EU Gefährliche Stoffe (RoHS)
Hazardous substances (RoHS)

2014/68/EU Druckgeräterichtlinie (DGRl) (2)
Pressure Equipment Directive (PED) (2)

2014/30/EU Elektromagnetische Verträglichkeit (EMV) (3)
Electromagnetic Compatibility (EMC) (3)

2014/34/EU Explosionsschutz (ATEX) (1)
Explosion protection (ATEX) (1)

(1) Detaillierte Angaben siehe Anhang
Detailed information refer to Annex

(3) Für optional eingebaute Transmitter oder Anzeigen gelten deren EU-Konformitätserklärungen und die darin gelisteten Normen.
For optional built-in transmitters or indicators their respective EU declarations of conformity and the therein listed standards apply.

Unterzeichnet für und im Namen von / Signed for and on behalf of

WIKA Alexander Wiegand SE & Co. KG
Klingenberg, 2019-02-05

Stefan Heidinger, Vice President Electric
Temperature Measurement

Franz-Josef Vogel, Executive Vice President
Process Instrumentation

WIKA Alexander Wiegand SE & Co. KG
Alexander-Wiegand-Straße 30
53511 Klingenberg
Germany

Tel. +49 0 721 152-0
Fax +49 0 721 152-406
E-Mail info@wiika.de
www.wika.de

Kommanditgesellschaft: zu Klingenberg –
Amtsgericht Aschaffenburg HRA 1815
Komplementär: WIKA Verwaltungs SE & Co. KG –
zur Klingenberg – Amtsgericht Aschaffenburg
HRA 4665

Komplementär: WIKA International SE – zur Klingenberg –
Amtsgericht Aschaffenburg HRB 15105
Vorstand: Alexander Wiegener
Vorsitzender des Aufsichtsrats: Dr. Max Egli
EU-Konformitätserklärung

EU Declaration of Conformity

11570700.09, Anhang 01 Typcodestruktur / Annex 01 Model Code Structure

<table>
<thead>
<tr>
<th>X</th>
<th>XXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>bcd</td>
</tr>
</tbody>
</table>

Beispiel/Example

TR10-C - AIB

a“ Typenbezeichnung

siehe Anhang 02 / Model Designation: Refer to Annex 02

b“ Zulassung / Approval

A = ATEX,
I = IECEx und / and ATEX
Z = Nicht Ex / Non Ex

Alle anderen Buchstaben des Alphabets und die Ziffern 0 bis 9, ausgenommen die Buchstaben N und Z, sind reservierte Zeichen für andere Zulassungen zusätzlich zu ATEX und IECEx.

All other letters of alphabet and numbers 0 till 9 excluded the letters N and Z are reserved characters for other approvals additional to ATEX and IECEx.

c“ Zündschutzart / Type of Protection

Ex - E
N - Ex nA
I - Ex i

Ex t nur in Verbindung mit anderen Zündschutzarten wie Ex e oder Ex nA

Ex t only in combination with other type of ignition protection like Ex e or Ex nA

d“ Zonen (EPL) / Zones (EPL)

<table>
<thead>
<tr>
<th>A</th>
<th>Zone 0 (EPL Ga)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Zone 1/2 (EPL Ga/Gb)</td>
</tr>
<tr>
<td>C</td>
<td>Zone 1 (EPL Gb)</td>
</tr>
<tr>
<td>D</td>
<td>Zone 2 (EPL Gc)</td>
</tr>
</tbody>
</table>

Staubzonen / Dust zones

E = Zone 20 (EPL Da)
F = Zone 20/21 (EPL Da/Db)
G = Zone 21 (EPL Db)
H = Zone 22 (EPL Dc)

Mögliche Kennzeichnung bei Auswahl „J“ bei Zündschutzart

Possible marking when "J" is selected for type of protection

| II 1G Ex ia IIC T1, T2, T3, T4, T5, T6 Ga |
|---|----------------|
| II 1G/Ex ia IIC T1, T2, T3, T4, T5, T6 Ga/Gb |
| II 2G Ex ia IIC T1, T2, T3, T4, T5, T6 Gb |
| II 2G Ex ia IIC T1, T2, T3, T4, T5, T6 Gb |
| II 1D Ex ia IIC T65°C, T95°C, T125°C Da |
| II 1D Ex ia IIC T65°C, T95°C, T125°C Da/Db |
| II 2D Ex ia IIC T65°C, T95°C, T125°C Db |
| II 2D Ex ia IIC T65°C, T95°C, T125°C Db |

Mögliche Kennzeichnung bei Auswahl „N“ oder „E“ bei Zündschutzart

Possible marking when "N" or "E" is selected for type of protection

| II 2G Ex eb IIC T6 ... T1 Gb oder/or II 2G Ex eb IIC+CH4 T6 ... T1 Gb |
|---|----------------|
| II 2D Ex eb IIC TX °C Db |

Mögliche Kennzeichnung bei Auswahl „K“ bei Zündschutzart

| II 3G Ex nc IIC T6 ... T1 Gc X oder/or II 3G Ex nc IIC+CH4 T6 ... T1 Gc X |
|---|----------------|
| II 3G Ex nc IIC T6 ... T1 Gc X oder/or II 3G Ex nc IIC+CH4 T6 ... T1 Gc X |
| II 3G Ex nc IIC TX °C Dc X |

EC-type-examination certificate TÜV 10 ATEX 555793 X von TÜV NORD CERT GmbH, D-45141 Essen (Reg.-Nr. 0044)

EU-type-examination certificate TÜV 18 ATEX 211392 X von TÜV NORD CERT GmbH, D-45141 Essen (Reg.-Nr. 0044)

Interna Fertigungskontrolle / Internal control of production

WIKAI Betriebsanleitung Typ TR25 (Ex i)

63
Anlage 1: EU-Konformitätserklärung

EU Declaration of Conformity

<table>
<thead>
<tr>
<th>Datenblatt</th>
<th>“a” Typenbezeichnung</th>
<th>Datenblatt</th>
<th>“a” Typenbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE 60.01</td>
<td>TR10-0</td>
<td>TE 66.01</td>
<td>TC10-0</td>
</tr>
<tr>
<td>BR TR10</td>
<td>TR10-1</td>
<td>BR TC10</td>
<td>TC10-1</td>
</tr>
<tr>
<td>BR TR10</td>
<td>TR10-2</td>
<td>BR TC10</td>
<td>TC10-2</td>
</tr>
<tr>
<td>TE 60.01</td>
<td>TR10-A</td>
<td>TE 65.01</td>
<td>TC10-A</td>
</tr>
<tr>
<td>TE 60.02</td>
<td>TR10-B</td>
<td>TE 65.02</td>
<td>TC10-B</td>
</tr>
<tr>
<td>TE 60.03</td>
<td>TR10-C</td>
<td>TE 65.03</td>
<td>TC10-C</td>
</tr>
<tr>
<td>TE 60.04</td>
<td>TR10-D</td>
<td>TE 65.04</td>
<td>TC10-D</td>
</tr>
<tr>
<td>TE 60.06</td>
<td>TR10-F</td>
<td>TE 65.06</td>
<td>TC10-F</td>
</tr>
<tr>
<td>TE 60.08</td>
<td>TR10-H</td>
<td>TE 65.08</td>
<td>TC10-H</td>
</tr>
<tr>
<td>TE 60.10</td>
<td>TR10-J</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TE 60.11</td>
<td>TR10-K</td>
<td>TE 65.11</td>
<td>TC10-K</td>
</tr>
<tr>
<td>TE 60.13</td>
<td>TR11-A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TE 60.14</td>
<td>TR11-C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TE 60.20</td>
<td>TR20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TE 60.22</td>
<td>TR22-A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TE 60.23</td>
<td>TR22-B</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TE 60.25</td>
<td>TR25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TE 60.30</td>
<td>TR40</td>
<td>TE 65.40</td>
<td>TC40</td>
</tr>
<tr>
<td>TE 60.50</td>
<td>TR50</td>
<td>TE 65.50</td>
<td>TC50</td>
</tr>
<tr>
<td>TE 60.53</td>
<td>TR53</td>
<td>TE 65.53</td>
<td>TC53</td>
</tr>
<tr>
<td>TE 60.55</td>
<td>TR55</td>
<td>TE 65.55</td>
<td>TC55</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>TE 65.58</td>
<td>TC59-W</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>TE 65.59</td>
<td>TC59-V</td>
</tr>
<tr>
<td>TR80.80</td>
<td>TR60</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TE 60.81</td>
<td>TR81</td>
<td>TE 65.81</td>
<td>TC81</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>TE 65.90</td>
<td>TC90</td>
</tr>
<tr>
<td>TE 70.01</td>
<td>TR95</td>
<td>TE 70.01</td>
<td>TC95</td>
</tr>
<tr>
<td>TE 64.01</td>
<td>TR17-A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TE 64.17</td>
<td>TR17-B</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Anlage 2: EPL-Matrix

EPL-Matrix

<table>
<thead>
<tr>
<th>Typ</th>
<th>Ex ia, Ex ib, Ex ic</th>
<th>Ex eb, Ex ec, Ex tb, Ex tc, Ex nA</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPL</td>
<td>Ga</td>
<td>Da</td>
</tr>
<tr>
<td>TR25</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Auszug aus „CA-HLP TRxx, TCxx EPL Matrix“ (14317278.02, 2019-10-07)
WIKA subsidiaries worldwide can be found online at www.wika.com.
WIKA-Niederlassungen weltweit finden Sie online unter www.wika.de.