Contents

1 General Safety Instructions ... 79

2 Special Intrinsic Safety Instructions 80
 2.1 Protection of diaphragm ... 80
 2.2 Special wiring advice .. 80
 2.3 Connection to Zone 0 ... 80
 2.4 Special precaution for connection to Zone 0 and or Zone 20 80
 2.5 Instructions for temperature ranges 81
 2.6 Special instructions for dust explosion protection 81

3 EC-Declaration of Conformity .. 82

4 EC-Type Examination Certificate 83

5 Product Description ... 97
 5.1 Construction .. 97
 5.1.1 Pressure Transducer 97
 5.1.2 Processing Unit .. 98
 5.1.3 Display Unit ... 98
 5.2 Function ... 99
 5.2.1 Functions of Transmitters without Displays 99
 5.2.2 Functions of Transmitters with Displays 99
 5.2.3 Functional features of transmitters with HART-Communication 100
 5.3 Installation Examples .. 101

6 Technical Data ... 103
 6.1 Input-values .. 103
 6.2 Output-values .. 103
 6.3 Construction .. 104
 6.4 Auxiliary Power ... 105
 6.5 Ambient Conditions .. 105
 6.6 Process Conditions .. 106
 6.7 Safety-related nominal values for IS protection conditions 106
 6.8 Product labels (example) 107

7 Installation ... 108
 7.1 Pressure Transmitter Installation 108
 7.2 Display Unit Upgrades .. 108
 7.3 Housing Reconfiguration 109
 7.4 Electrical Connection ... 110
 7.5 Pressure Compensation when using a Relative Pressure Sensor 111

8 Operation of Devices without Displays 112
 8.1 Preparation ... 112
 8.2 Key Functions (only for transmitters without display) 112
 8.3 Calibration with Pressure 113
1 General Safety Instructions

- Select the appropriate pressure transmitter with regard to scale range, performance and specific measurement conditions prior to installing and starting the instrument.

- Observe the relevant national regulations (e.g.: EN 50178, NEC, CEC) and observe the applicable standards and directives for special applications (e.g. with dangerous media such as oxygen, acetylene, flammable gases or liquids and toxic gases or liquids and with refrigeration plants or compressors).

If you do not observe the appropriate regulations, serious injuries and/or damage can occur!

- Open pressure connections only after the system is without pressure!

- Please make sure that the pressure transmitter is only used within the overload threshold limit at all times!

- Observe the ambient and working conditions outlined in chapter 6 "Technical Data"

- Ensure that the pressure transmitter is only operated in accordance with the provisions, i.e. as described in the following instructions.

- Do not interfere with or change the pressure transmitter in any other way than described in these operating instructions...

- Remove the pressure transmitter from service and mark it to prevent it from being used again accidentally, if it becomes damaged or unsafe for operation..

- **Take precautions with regard to remaining media in removed pressure transmitter. Remaining media in the pressure port may be hazardous or toxic!**

- Have repairs performed by the manufacturer only.

- Consider the details given in the EC-type examination certificate as well as the respective specifications for explosion hazard use of the country concerned (e.g.: IEC 60079, NEC, CEC). If you do not observe these stipulations, serious injuries and/or damage can occur.

Other important safety guidelines can be found in the different sections of this instruction manual.
2 Special Intrinsic Safety Instructions

2.1 Protection of diaphragm

⚠️ **Warning**

As soon as the diaphragm of an instrument gets damaged, absolutely no intrinsic safety can be guaranteed any longer! Thus the diaphragm must not come in contact with abrasive substances! The diaphragm must be protected against pressure peaks and must not be touched by tools! Information about material consistency against corrosion and diffusion can be found in our WIKA Handbook, ‘Pressure and Temperature Measurement’ (German: ISBN 3-9804074-0-3, English: ISBN 3-9804074-1-1).

2.2 Special wiring advice

⚠️ **Warning**

The housing must always be connected to earth to protect the instrument against electromagnetic fields and electrostatic charges.

The cables and wires must not be damaged.

Cables for applications in **Zone 1 and 2** or **Zone 21 and 22** must be checked with a test voltage between conductor/earth, conductor/screen, screen/earth of more than 500 V (AC).

Flying leads with fine wires must be covered by an end splice (cable preparation).

Both the internal capacity and inductivity must be considered.

Conductive screens may only be connected to earth one-sided and outside the hazardous area.

2.3 Connection to Zone 0

⚠️ **Warning**

(In general **Zone 0** is given when the instrument is surrounded by a mixture of explosive gases more than 1,000 hours per year = continuous hazard. The transmitter may only be operated under **Zone 0** conditions, as long as an atmospheric pressure of 0.8 to 1.1 bar is guaranteed).

The circuits must be of type Ex ia.

The ingress protection must comply to IP 67 according to IEC 529.

2.4 Special precaution for connection to Zone 0 and or Zone 20

⚠️ **Warning**

Make absolutely sure to follow the advice given in the IEC publication 60 529 for connection to **Zone 0** and/or **Zone 20** for IP 67 pressure connections!

Installation in non-metallic vessels:
All metallic parts reaching into **Zone 0** and/or **Zone 20** must be grounded.
The intrinsically safe circuit must be decoupled from the regular circuit.

If the mounting position is less than 1m away from the transition into **Zone 0** and/or **Zone 20** an overvoltage protection must be integrated. This can either be done within the transmitter (option: overvoltage protection), or outside the transmitter by the customer himself.
2.5 Instructions for temperature ranges

Observe the permissible surface temperatures applicable for this range according to the defined temperature classes.
Observe the maximum temperature value (of the temperature range defined under item 15.3.4 in the EC type test certificate at the hexagon of the process connection.
Protect the pressure transmitter against touching or affix a warning notice.
Insulate heat sources thermally from the pressure transmitter (e.g. pipes or tanks).

2.6 Special instructions for dust explosion protection

Ensure that under hazardous dust environments the pressure transmitter is mounted in a shielded section and protect it against shocks.
When installing the pressure transmitter or the cable gland into areas which require category 1D equipment, ensure that ingress protection IP 6X according to IEC 60 529 is guaranteed.
Observe the EN 50281-1-2 in relation to e.g. dust deposits and temperature.
The permissible ambient temperatures as well as the maximum surface temperatures are to be taken from the EC type test certificate.
EC-Declaration of Conformity

EG-Konformitäts-

Dokument Nr.: 11135212.01

Wir erklären in alleiniger Verantwortung, dass die mit **Ce** gekennzeichneten Produkte

typen: **IUT-10 / IUT-11**

die grundlegenden Anforderungen der folgenden Richtlinie(n) erfüllen:

- 97/23/EG (DGRL) (1)
- 89/336/EWG (EMV)
- 94/9/EG (ATEX) (2)

Die Geräte wurden entsprechend den folgenden Normen geprüft:

- EN 61326:1997 +A1 +A2 +A3
- EN 50014:1997 +A1 +A2
- EN 50281-1-1:1998 +A1
- EN 20284:1999

(1) PS > 200 bar: Bewertungsverfahren Modul A

(2) EG-Baumusterprüfbescheinigung DMT 99 ATEX E 093 von EXAM BBG Prof. und Zertifiker GmbH, Bochum (Reg.-Nr. 0158).

EC Declaration of Conformity

Document No.: 11135212.01

We declare under our sole responsibility that the **Ce** marked products

typen: **IUT-10 / IUT-11**

die grundlegenden Anforderungen der folgenden Richtlinie(n) erfüllen:

- 97/23/EC (PED) (1)
- 89/336/EC (EMC)
- 94/9/EC (ATEX) (2)

The devices have been tested according to the standards:

- EN 61326:1997 +A1 +A2 +A3
- EN 50014:1997 +A1 +A2
- EN 50281-1-1:1998 +A1
- EN 20284:1999

(1) PS > 200 bar: procedure of evaluation Module A

(2) EC-type-examination certificate DMT 99 ATEX E 093 of EXAM BBG Prof. und Zertifiker GmbH, Bochum (reg. no. 0158).

Déclaration de Conformité CE

Document No.: 11135212.01

Nous déclarons sous notre seule responsabilité que les appareils marqués **Ce**

typen: **IUT-10 / IUT-11**

die grundlegenden Anforderungen der folgenden Richtlinie(n) erfüllen:

- 97/23/CE (DESP) (1)
- 89/336/CEE (CEM)
- 94/9/CE (ATEX) (2)

Les appareils ont été vérifiés suivant les normes:

- EN 61326:1997 +A1 +A2 +A3
- EN 50014:1997 +A1 +A2
- EN 50281-1-1:1998 +A1
- EN 20284:1999

(1) PS > 200 bar: procédure d’évaluation Module A

(2) Attestation d’examen CE de type DMT 99 ATEX E 093 de EXAM BBG Prof. und Zertifiker GmbH, Bochum (reg. no. 0158).

WIKA Alexander Wiegand GmbH & Co. KG

Klingenberg, 2006-05-08

Geschäftsbereich **TRONIC**

Company division **TRONIC**

Ressort **TRONIC**

Qualitätsmanagement **TRONIC**

Quality management **TRONIC**

Management de la qualité **TRONIC**

i. V. Stefan Richter

i. A. Thomas Gerling

Subject to change due to technical modifications.

© Copyright WIKA Alexander Wiegand GmbH & Co. KG / Germany

WIKA Alexander Wiegand GmbH & Co. KG · Alexander-Wiegand-Str. · 63911 Klingenberg · ☏ (09372) 132 - 710 · Fax - 706 · E-mail: support-tronic@wika.de · www.wika.de
4 EC-Type Examination Certificate

Translation by WIKI

DMT

(1) EC TYPE TEST CERTIFICATE

(2) - Guideline 94/9/EG -
Instruments and Protective Systems for the Use in Hazardous Areas in Accordance with the Regulation

(3) DMT 99 ATEX E 093

(4) Instrument: Pressure Transmitter UniTrans model IUT-1,......

(5) Manufacturer: WIKA Alexander Wiegand GmbH & Co.

(6) Address: D 63911 Klingenberg / Main

(7) The design of this instrument as well as the various approved versions are laid down in the appendix to this type test certificate.

(8) In accordance with the Article 8 of the Directives of the European Communities of March 23, 1994 (94/9/EG), the certification agency of the DMT Association for Research and Testing mbH (DMT Gesellschaft für Forschung und Prüfung mbH), designated agency No. 0158, certifies the conformity of the instrument with the fundamental safety and health requirements for the conception and the construction of instruments and protective systems for the use in hazardous areas in accordance with the regulations mentioned in Appendix II of the guideline. The results of this test have been laid down in the confidential test report No. BVS PP 99.2048 EG.

(9) The fundamental safety and health requirements are complied with by conforming to:

<table>
<thead>
<tr>
<th>EN 50014:1997</th>
<th>General regulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 50020:1994 (VDE 0170/0171 part 7/4 98)</td>
<td>Intrinsically safety</td>
</tr>
<tr>
<td>EN 50364:1989</td>
<td>Group II, category 1G</td>
</tr>
</tbody>
</table>

(10) Special conditions for the safe use of the instrument are referred to in the annex to this certificate, if the sign „X“ is attached to the certificate’s number.

(11) This EC type test certificate refers only to the conception and the construction of the instrument described. Further requirements of the guideline 94/9/EG have to be complied with for the production and distribution of the instrument.

(12) The instrument is to be provided with the following marks:

[Ex] II ½ G Ex ia IIC T4/T5/T6

DMT Association for Research and Testing GmbH
DMT Gesellschaft für Forschung und Prüfung mbH
Essen, November 24, 1999

(Signature illegible) (Signature illegible)
DMT certification agency Head of department in charge
Translation by [WIKA]

DMT

(13) Annex to

(14) EC TYPE TEST CERTIFICATE

DMT 99 ATEX E 093

(15) 15.1 Designation and Model

Pressure Transmitter UniTrans, Model IUT-1*.*.*.*

In the full designation letters and figures identifying the details of the instrument type will be inserted instead of the "*.*.*.*":

Model IUT-1*.*.*.*

- output signal, pressure range, process connection
- 0 = standard or
- 1 = flush diaphragm

15.2 Description

The pressure transmitter can be used for continuous measurement of hydrostatic filling levels and the transformation of the measured values into a proportional electrical signal. The pressure transmitter consists of a processing unit Model EMP- 7-P-**-Ex (DMT 99 ATEX E 92 U), a display Model A-IRU-1-*-* (DMT 99 ATEX E 091 U) and a sensor Model TIS*** (DMT 99 ATEX E 091 U). The connection to the intrinsically safe power supply is carried out via a cable or a plug.

15.3 Electrical, mechanical and thermal data

15.3.1 Supply and signal circuit (clamps ‘+’ and ‘−’ or plug 1 and 2) for the connection to an intrinsically circuit with the following maximum values:

Voltage: U DC = 30 V

Current:
- for temperature class T4 = 100 mA
- for temperature class T5 and T6 = 93 mA

Load:
- for temperature class T4 = 750 mW
- for temperature class T5 and T6 = 697 mW

- effective internal capacity Ci = 9 nF
- effective internal inductivity Li = very low

15.3.2 Test circuit (clamps ‘+’ and ‘−’) only for temporary connection to a potential-free ammeter.

Page 2 of 3, DMT 99 ATEX E 093

This certificate may only be distributed in unaltered form.
Am Technologiepark 1, 45077 Essen, Telephone ++49-201-172-1418, Telefax ++49-201-172-1716

2009/03/05 V08 06/2006

84
15.3.3 Ambient temperature range \(T_a \)
- for temperature class \(T_4 \): \(-40 \, ^\circ C \leq T_a \leq 70 \, ^\circ C \)
- for temperature class \(T_5 \) and \(T_6 \): \(-40 \, ^\circ C \leq T_a \leq 80 \, ^\circ C \)

15.3.4 Medium temperature
- for temperature class \(T_4 \): \(< 105 \, ^\circ C \)
- for temperature class \(T_5 \) and \(T_6 \): \(< 60 \, ^\circ C \)

(16) Test report
No. BVS PP 99.2084 EG
4 Pages

(17) Special conditions for a safe operation
Not necessary
Universal IS Pressure Transmitter UniTrans
EC-Type Examination Certificate

Translation

1st Supplement
(Supplement in accordance with Directive 94/9/EC Annex III number 6)

to the EC-Type Examination Certificate
DMT 99 ATEX E 093

Equipment: Pressure transmitter UniTrans type IUT-1.*.*.*.*.*
Manufacturer: WIKA Alexander Wiegand GmbH & Co. KG
Address: D - 63911 Klingenberg/Main

Description
The pressure transmitter can be modified according to the descriptive documents as mentioned in the pertinent test and assessment report and the following variations are also available:
type IUT-1.*.*.*.*.*.*.*

Test and assessment report
BVS PP 99.2084 EG / N1 as of 28.05.02

Deutsche Montan Technologie GmbH
Essen, dated 28. May 2002

Jockers
DTM-Certification body

Eickhoff
Head of special services unit

We confirm the correctness of the translation from the German original.
In the case of arbitration only the German wording shall be valid and binding.

45307 Essen, 28. May 2002
BVS-Sch/Sa A 20020239

Deutsche Montan Technologie GmbH

Jockers
DTM-Certification body

Eickhoff
Head of special services unit

Page 1 of 1 to DMT 99 ATEX E 093 / N1
This certificate may only be reproduced in its entirety and without change.
Ar technologiepark 1, 45307 Essen, Telefon (0201) 172-1416, Telefax (0201) 172-1116
Universal IS Pressure Transmitter UniTrans
EC-Type Examination Certificate

Translation

2nd Supplement
(Supplement in accordance with Directive 94/9/EC Annex III number 6)

to the EC-Type Examination Certificate
DMT 99 ATEX E 093

Equipment: Pressure transmitter UniTrans type IUT-1*...
Manufacturer: WIKA Alexander Wiegand GmbH & Co. KG
Address: D - 63911 Klingenberg/Main

Description
The Pressure transmitter UniTrans type IUT-10.*.*.*.*A****.* or type IUT-11.*.*.*.*A***X.* with modified aluminium enclosure meets category 1/2 G and category 1/2 D and gets the marking:

Pressure transmitter UniTrans

- type IUT-10.*.*.*.*A****.*

X - 1/2 G, 1/2 D
A - aluminium enclosure, modified for dust

- type IUT-11.*.*.*.*A***X.*

X - 1/2 G, 1/2 D
A - aluminium enclosure, modified for dust

The Essential Health and Safety Requirements of the modified equipment are assured by compliance with:

- EN 50014:1997 + A1 – A2 General requirements
- EN 50020:2002 Intrinsic safety ‘i’
- EN 50284:1999 Group II Category 1G
- EN 50281-1-1:1998 + A1 Dust explosion protection

Parameters

Electrical data without change
Universal IS Pressure Transmitter UniTrans
EC-Type Examination Certificate

Thermal data
ambient temperature range
for temperature class T4 - 40 °C ≤ Ta ≤ +70 °C
for temperature class T5 und T6 - 40 °C ≤ Ta ≤ +60 °C

process temperature
for temperature class T4 < 105 °C
for temperature class T5 und T6 < 60 °C

Maximum temperature at the process connection for applications requiring
category 1/2D equipment 75 °C

Maximum surface temperature T
for temperature class T4 ≤ 130 °C
at the sensor (category 1D)
at the enclosure (category 2D)
for temperature class T5 ≤ 75 °C
at the sensor (category 1D)
at the enclosure (category 2D)
for temperature class T6 ≤ 95 °C
at the sensor (category 1D)
at the enclosure (category 2D)

Degrees of protection according to EN 60529 IP6X

The marking of the equipment shall include the following:
existing types

II 1/2G EEEx ia IIC T4/T5/6

Test and assessment report
BVS PP 99/2084 BG as of 14.12.2004

EXAM BBG Prüf- und Zertifizier GmbH
Bochum, dated 14.Dezember 2004

Signed: Dr. Jockers
Certification body

Signed: Dr. Eickhoff
Special services unit

Page 2 of 3 to DMT 09 ATEX E 003 / NG
This certificate may only be reproduced in its entirety and without change.

Data Abteilung E. 48000 Baden Germany Phone +49 3424 990-163 Fax +49 3424 990-160
(until 31.03.2003: Deutsche Motoren Technologie GmbH Am Technologipark 1 43507 Ilmen Germany)

Subject to change due to technical modifications.
© Copyright WIKA Alexander Wiegand GmbH & Co. KG / Germany
WIKA Alexander Wiegand GmbH & Co. KG · Alexander-Wiegand-Str. · 63911 Klingenberg · (09372) 132 · 710 · Fax - 706 · E-mail: support-tronic@wika.de · www.wika.de
We confirm the correctness of the translation from the German original. In the case of arbitration only the German wording shall be valid and binding.

44809 Bochum, 08.06.2005
BVS-Hö/Mi E 0816/05

EXAM BBG Prüf- und Zertifizier GmbH

[Signatures]

Certification body

Special services unit
Translation

3rd Supplement

(Supplement in accordance with Directive 94/9/EC Annex III number 6)

to the EC-Type Examination Certificate

DMT 99 ATEX E 093

Equipment: Pressure transmitter UniTrans type IUT-1*...
Manufacturer: WIKA Alexander Wiegand GmbH & Co. KG
Address: 63911 Klingenberg/Main, Germany

Description
The pressure transmitter can be modified according to the descriptive documents as mentioned in the pertinent test and assessment report.

The Essential Health and Safety Requirements of the modified equipment are assured by compliance with:

- EN 50014:1997 + A1 – A2 General requirements
- EN 50020:2002 Intrinsic safety 'T'
- EN 50284:1999 Group II Category 1G
- EN 50281-1-1:1998 +A1 Dust explosion protection

The marking of the equipment shall include the following:

II 1/2G EEx ia IIIC T4/T5/6
II 1/2D IP6X T see manual

Test and assessment report
BVS PP 99.2084 EG as of 28.07.2005

EXAM BBG Prüf- und Zertifizier GmbH
Bochum, dated 28. July 2005

Signed: Migenda Certification body

Signed: Dr. Eickhoff Special services unit
We confirm the correctness of the translation from the German original.
In the case of arbitration only the German wording shall be valid and binding.

44809 Bochum, 28. July 2005
BVS-Schu/Kw A 20050409

EXAM BBG Prüf- und Zertifizier GmbH

[Signatures]

Certification body Special services unit
Translation by [WIKA]

[Ex]

EC TYPE TEST CERTIFICATE

(1) DMT 99 ATEX E 091 U

(2) DMT Association for Research and Testing GmbH

DMT Gesellschaft für Forschung und Prüfung mbH

Essen, November 15, 1999

(Signature illegible)

Head of department in charge

This certificate may only be distributed in unaltered form.

Am Technologiepark 1, 45367 Essen, Telephone ++49-201-172-1416, Telefax ++49-201-172-1716

Page 1 of 2, DMT 99 ATEX E 091 U
EC TYPE TEST CERTIFICATE

DMT 99 ATEX E 091 U

15.1 Model name for display model A-IRU-1-**

In the full designation letters and figures identifying the details of the instrument type will be inserted instead of the "**".

15.2 Description

The display is mounted to intrinsically safe instrument for the visualisation of process data. The electronic components are installed in a housing of plastic (surface resistance ≤ 10^9 Ω). This housing is used as cover of the intrinsically safe instrument.

15.3 Electrical, mechanical and thermal data

for the connection to an intrinsically safe circuit with the following maximum values:

- Voltage: U = DC = 9.2 V
- Current: I = 115 mA
- max. Load:
 - for temperature class T4 and T5 = 0.133 W
 - for temperature class T6 = 0.066 W
- effective internal capacity C1 = 2 nF
- effective internal inductivity L1 = very low
- Ambient temperatures:
 - temperature class T4: -40 °C ... + 70 °C
 - temperature class T5 and T6: -40 °C ... + 60 °C

16. Test report

No: BVS P-99 2082 EG
3 Pages

17. Special conditions for a safe operation

17.1 The display can be used under the following ambient temperatures:

- temperature class T4: -40 °C ... + 70 °C
- temperature class T5 and T6: -40 °C ... + 60 °C

17.2 When the display is mounted to an intrinsically safe instrument the result must be checked and approved. For the resulting complete instrument a minimum overall ingress protection of IP 20 according to EN 60529 must be guaranteed.
Translation by Wika

1st Addendum
(addition according to Guideline 94/9/EG, appendix III, number 6)

to the EC TYPE TEST CERTIFICATE
DMT 99 ATEX E 091 U

Component: Display model IRU-1*-
Manufacturer: WIKA Alexander Wiegand GmbH & Co.
Address: D 63911 Klingenberg / Main

Description
The display can also be manufactured in compliance with the test documents mentioned in the related test certificate No. BVS PP 99.2082 EG / N1

Test report
No. BVS PP 99.2082 EG / N1, edition 04/28/2000, 3 Pages

DMT Deutsche Montan Technologie GmbH
DMT Association for Research and Testing GmbH
Essen, April 24, 2000

(Signature illegible) (Signature illegible)
DMT certification agency Head of department in charge

Page 1 of 1, of the addendum to the DMT 99 ATEX E 091 U
This certificate may only be distributed in unaltered form.
Am Technologiepark 1, 45307 Essen, Telephone (0201)172-1416, Telefax (0201)172-1716
Translation

2nd Supplement
(Supplement in accordance with Directive 94/9/EC Annex III number 6)

to the EC-Type Examination Certificate
DMT 99 ATEX E 091 U

Equipment: Display type A-IRU-1-**
Manufacturer: WIKA Alexander Wiegand GmbH & Co. KG
Address: D - 63911 Klingenberg/Main

Description
The display can be modified according to the descriptive documents as mentioned in the pertinent test and assessment report.

Test and assessment report
BVS PP 99.2082 EG / N2 as of 28.05.02

Deutsche Montan Technologie GmbH
EsSEN, dated 28. May 2002

signed: Jockers
DMT-Certification body

signed: Eickhoff
Head of special services unit

We confirm the correctness of the translation from the German original.
In the case of arbitration only the German wording shall be valid and binding.

45307 Essen, 28. May 2002
BVS-Schu/Ar A 20020238

Deutsche Montan Technologie GmbH

Signed: DMT-Certification body

Signed: Head of special services unit

Page 1 of 1 to DMT 99 ATEX E 091 U / N2
This certificate may only be reproduced in its entirety and without change.
Am Technologiepark 1, 45307 Essen, Telefon (0201) 172-1416, Telefax (0201) 172-1716
Translation

3rd Supplement
(Supplement in accordance with Directive 94/9/EC Annex III number 6)

to the EC-Type Examination Certificate
DMT 99 ATEX E 091 U

Equipment: Display type A-IRU-1-*-*
Manufacturer: WIKA Alexander Wiegand GmbH & Co. KG
Address: D - 63911 Klingenberg/Main

Description
The display can be also be manufactured according to the descriptive documents as mentioned in the pertinent test and assessment report.

The Essential Health and Safety Requirements of the modified equipment are assured by compliance with:

EN 50014:1997+A1-A2 General requirements
EN 50020:1994 Intrinsic safety 'i'

Test and assessment report
BVS PP 99.2082 EG as of 09.04.2003

Deutsche Montan Technologie GmbH
Essen, dated 09. April 2003

signed: Jockers
DMT-Certification body

signed: Eickhoff
Head of special services unit

We confirm the correctness of the translation from the German original.
In the case of arbitration only the German wording shall be valid and binding.

45307 Essen, 09.04.2003
BVS-Schu/Mi A 20020609

Deutsche Montan Technologie GmbH

DMT-Certification body

Head of special services unit
5 Product Description

The intrinsically safe pressure transmitter UniTrans can be used in level control applications as well as for pressure measurement applications in process industry. A variety of process connections, measurement ranges, main boards and display options result in a product for a wide range of applications.

5.1 Construction

The UniTrans consists of a pressure sensor, a control interface unit and a housing cover with optional display. Due to this modular design, different transmitter versions can be mounted (see “Model Key” on page 151).

5.1.1 Pressure Transducer

The pressure transducer has a piezo-resistive or thin film measurement cell depending on the pressure range. The sensors are temperature compensated, and have a hermetically welded membrane which is "helium" leak-tested. The pressure transducers do not have internal sealing elements.

Pressure transducers further distinguish themselves from one another based on their pressure ranges and the different materials of wetted parts. Different process connections can be selected to serve a wide range of applications.

Never exceed the overpressure limit of the respective pressure transducer.

Warning
5.1.2 Processing Unit

The processing unit, which is integrated in the housing contains the terminal compartment and the keypad used for programming the transmitter. The four keys must be activated (unlocked) before use. During normal operation the keypad is locked to protect data and functions previously entered. The keypad is automatically locked when no key is hit for 10 minutes. The processing unit converts the digitalized signal from the measuring unit into a standard 4...20 mA current signal.

![Processing Unit Diagram]

5.1.3 Display Unit

The measured-value indicator has four digits (in a 7-segment display) + symbols. Below it, is line 1 (16-segment display) used to display error codes and the signal’s unit of measure. The unit of measure can be selected by the operator. Measurements over 9999 can not be correctly displayed. Please note this when choosing the unit (e.g. 9999 Pascal = 0.09999 bar). Additional information is displayed in lines 2 and 3 (16-segment display). The operator can enter commands in the programming mode on the display unit by means of menu guided, clear-text prompts.

![Display Unit Diagram]
Transmitters with displays offer a larger number of programming and processing options. These options include alarm status, damping, signal inversion, tank linearization and diagnostic messages.

Display units can be easily upgraded (see chapter 7.2).

5.2 Function

The pressure transducer converts the existing pressure into an electrical signal. Microelectronics further process the input signal and produce a proportional 4-20 mA standard signal.

The display-version allows programming (parameterization) and the display of extended functions such as inversion, damping, alarm status and linearization.

5.2.1 Functions of Transmitters without Displays

- Calibration of zero and span under pressure (see 8.3)
- Calibration of zero and span without pressure (dry adjustment) (see 8.4)
- Setting the dampening / integration of the output signal 0-40 s (see 8.5)
- Reset to manufacturer’s default values (see 8.6)
- Mounting correction of the sensor (beginning with software version 1.05, see 8.4.3)

5.2.2 Functions of Transmitters with Displays

- Settable units of measurement (mbar, bar, psi, mA, %, m, mm WS) (see 9.5.1)
- Volume-related unit of measuring value can be set (l, kg, t, m³, gal, lb) (see 9.5.1)
- Temperature and Min/Max values shown in display (see 9.5.1)
- Nominal pressure range of the sensor shown in display (see 9.5.1)
- Zero and span calibration (with/without pressure) (see 9.5.2)
- Setting of dampening / integration of output signal 0-40 s (see 9.5.3)
- Inversion of the output current signal (see 9.5.3)
- Setting the output current value in case of alarm (3.6 mA or 21 mA) (see 9.5.3)
- Setting the limits of the output signal (see 9.5.3)
- Offset of the output signal (see 9.5.3)
- Mounting correction of the sensor (beginning with software version 1.05, see 8.4.3)
- Measuring circuit test function (see 9.5.4)
- Reset functions (see 9.5.4)
- Password activation (see 9.5.4)
- Selecting the language of the display (see 9.5.5)
- Entering of a table function for the linearization of the output signal (see 9.5.6)
- Entering the medium density (see 9.5.6)
5.2.3 Functional features of transmitters with HART-Communication

Universal commands
- Displayed unit can be set (mbar, bar, psi, mA, %, m, mm WS ...)
 (see chapter 10.2.3)
- Definition of measuring site description and tag number (see 10.2.3)
- Measuring circuit test function (see 10.2.8)
- Temperature and min. / max values can be displayed (see chapter 10.2.3)
- Nominal pressure range of sensor can be displayed (see chapter 10.2.3)
- Cyclic measurement and transmission of the measured value (see chapter 10.2.3)

Common commands
- Calibration of zero point and span (under/without pressure) (see chapter 10.2.4)
- Adjustment of damping/integration of the output signal 0 s ... 40 s
 (see chapter 10.2.5)

Device-specific commands
- Inversion of output current signal (see chapter 10.2.5)
- Adjustment of alarm values for the output current (3.6 mA or 21 mA)
 (see chapter 10.2.5)
- Adjustment of output signal limits (see chapter 10.2.5)
- Mounting correction of the sensor (see chapter 10.2.7)
- Reset functions (see chapter 10.2.7)
- Password activation (see chapter 10.2.7)
- Setting up a table function for a linearisation of the output signal (see 10.2.6)
- Entering the medium density (see chapter 10.2.6)
- Volume-related units of measured value can be set (l, kg, t, m3, gal, lb) (see 10.2.3)
- Display and graphical illustration of the measuring value over time (see 10.2.10)
5.3 Installation Examples

The UniTrans is primarily used to monitor the pressure in pipes, technical equipment and tanks. Depending on the pressure range pressures between 20 mbar up to 4000 bar can be measured. The pressure is measured using absolute (against a vacuum) or relative (against external or air pressure) measurement depending on the type of sensor selected.

The UniTrans is also used for hydrostatic pressure measurement within liquid filled pipes and containers.

Process Pressure Measurement:
Used to measure pressure of liquids or gases in pipelines.

Process Pressure Measurement:
Used to measure container pressure.

Process Pressure Measurement:
Installed behind feed pumps for process control or monitoring of pump functions.

Process Pressure Measurement:
Installed in front of and behind the filter. Uses the pressure differential for monitoring the function or accumulation of dirt in the filter. Both output signals are processed by a PLC or signal converter.
Level Control:
Externally mounted
(with front flat diaphragm)

Level Control:
Combined pressure and head pressure are measured by two externally mounted pressure transducers. The two signals are analyzed and the differential is calculated by a PLC or suitable signal converter.
6 Technical Data

6.1 Input-values

<table>
<thead>
<tr>
<th>Pressure Ranges</th>
<th>overpressure limit</th>
<th>Burst pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Absolute pressure upon request)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ... 0.4 bar</td>
<td>2</td>
<td>2.4</td>
</tr>
<tr>
<td>0 ... 1.6 bar</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>0 ... 6 bar</td>
<td>35</td>
<td>42</td>
</tr>
<tr>
<td>0 ... 16 bar</td>
<td>80</td>
<td>96</td>
</tr>
<tr>
<td>0 ... 40 bar</td>
<td>80</td>
<td>400</td>
</tr>
<tr>
<td>0 ... 100 bar</td>
<td>200</td>
<td>800</td>
</tr>
<tr>
<td>0 ... 250 bar</td>
<td>500</td>
<td>1200</td>
</tr>
<tr>
<td>0 ... 600 bar</td>
<td>1200</td>
<td>2400</td>
</tr>
<tr>
<td>0 ... 1,000 bar</td>
<td>1500</td>
<td>3000</td>
</tr>
<tr>
<td>0 ... 1,600 bar</td>
<td>2000</td>
<td>4000</td>
</tr>
<tr>
<td>0 ... 2,500 bar</td>
<td>3000</td>
<td>5000</td>
</tr>
<tr>
<td>0 ... 4,000 bar</td>
<td>4400</td>
<td>7000</td>
</tr>
<tr>
<td>-1 ... +0 bar*</td>
<td>2</td>
<td>2.4</td>
</tr>
<tr>
<td>-1 ... +0.6 bar*</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>-1 ... +3 bar*</td>
<td>35</td>
<td>42</td>
</tr>
<tr>
<td>-1 ... +5 bar*</td>
<td>35</td>
<td>42</td>
</tr>
<tr>
<td>-1 ... +15 bar*</td>
<td>80</td>
<td>96</td>
</tr>
</tbody>
</table>

* only relative pressure

Do not exceed the nominal pressure!

6.2 Output-values

<table>
<thead>
<tr>
<th>Output signal</th>
<th>4 ... 20 mA, two-wire, optionally with modulated HART signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy [% of span]</td>
<td>≤ 0.10 at ranges ≤ 1000 bar</td>
</tr>
<tr>
<td></td>
<td>≤ 0.30 at ranges > 1000 bar</td>
</tr>
<tr>
<td>(incl. non-linearity, hysteresis, non-repeatability, zero signal and full scale error)</td>
<td></td>
</tr>
<tr>
<td>Non-linearity</td>
<td>≤ 0.05% of span (BFSL) per IEC 61298-2</td>
</tr>
<tr>
<td></td>
<td>at ranges ≤ 1000 bar</td>
</tr>
<tr>
<td></td>
<td>≤ 0.20% of span at ranges > 1000 bar</td>
</tr>
<tr>
<td>Turn down behavior: (1/k)</td>
<td>no changes of deviation</td>
</tr>
<tr>
<td>up to 1 : 5</td>
<td>the accuracy must be multiplied by the factor (turn down / 5)</td>
</tr>
<tr>
<td>1 : 5 to 1 : 20</td>
<td>example for TD = 1:15, (k = 15)</td>
</tr>
<tr>
<td></td>
<td>accuracy = 0.10 * (15/5) = 0.3</td>
</tr>
</tbody>
</table>
6.3 Construction

<table>
<thead>
<tr>
<th>Process connections</th>
<th>G 1/2 per EN 837 (max. 1600 bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model IUT-10</td>
<td>G 1/2 NPT per "nominal size for US standard tapered pipe thread NPT" (max. 1600 bar)</td>
</tr>
<tr>
<td></td>
<td>M 16 x 1,5 with sealing cone (≥ 1600 bar)</td>
</tr>
<tr>
<td></td>
<td>M 20 x 1,5 with sealing cone (≥ 1600 bar)</td>
</tr>
<tr>
<td></td>
<td>9/16 - 18 UNF innen F 250-C (≥ 1600 bar)</td>
</tr>
<tr>
<td>Model IUT-11</td>
<td>G 1 flush diaphragm with o-ring (0 ... 0.4 up to 0 ... 16 bar)</td>
</tr>
<tr>
<td></td>
<td>G 1/2 flush diaphragm with o-ring (0 ... 6 bis 0 ... 600 bar)</td>
</tr>
<tr>
<td></td>
<td>G 1 1/2 flush diaphragm with o-ring (0 ... 0.4 bis 0 ... 16 bar)</td>
</tr>
<tr>
<td>Model IUT-11 EHEDG version</td>
<td>G 1 flush diaphragm with o-ring (0 ... 0.4 bis 0 ... 16 bar)</td>
</tr>
</tbody>
</table>
Materials

Housing
- Highly resistive, fiberglass-enforced plastic (PBT); optionally aluminium
- CrNi-steel 1.4571 and 2.4711
- CrNi-steel 1.4571, o-ring: NBR (Viton or EPDM); {Hastelloy C4}
- CrNi-steel 1.4435

Wetted parts (IUT-10)
- IUT-10

Wetted parts (IUT-11)
- IUT-11

Wetted parts (IUT-11 EHEDG version)
- Internal transmission fluid
- Standard (Halocarbon oil for oxygen-applications); {FDA-approved}

Electrical connection
- per EN 60 529/ IEC529
- M 20 x 1.5 cable gland with internal terminal block. For the dust approval version, only cable glands and blind plugs with the appropriate ATEX approval may be used.
- M12x1 plug, 4-pin (pin allocation: 1+ 3-)
- {3/4" NPT female conduit (only with aluminum case)}

Electric protection
- Reverse polarity, overload and short circuit protection

6.4 Auxiliary Power

Power supply
- 12 ... 36 V DC

Attention
- Please consider the safety related values according to EC-Type Examination Certificate (see chapter 3)

6.5 Ambient Conditions

Ambient temperature
- – 40 °C ... + 85 °C
- (– 20 °C ... 70 °C with display)

Attention
- Please consider the safety related values according to EC-Type Examination Certificate (see chapter 3)
6.6 Process Conditions

°F = (°C * 1.8) + 32

Storage temperature
−40 °C ... +85 °C
(−35 °C ... 80 °C with display)

Climate class
D per DIN IEC 654-1

Ingress protection per EN 60 529
IP 65 for plastic case
IP 67 for aluminium case

EMC per
EN 50 081-2, EN 50 082-2,
NAMUR NE 21

6.7 Safety-related nominal values for IS protection conditions

Ex-protection: The instruments are approved for IS zones, which require the categories 1/2G, 2G, 3G. Dust approval 1/2D, 2D, 3D is available as an option.

Output signal
4 ... 20 mA, two-wire, optionally with modulated HART signal

Ignition protection class
EEx ia IIC T4 | EEx ia IIC T5 / T6

Available as an option
IP 6X T130°C / 95°C / 80°C

Certificate no. (display)
(DMT 99 ATEX E 091 U)

Certificate no. (pressure transmitter)
(DMT 99 ATEX E 093)

Power supply Ui
30 V DC

Short-circuit current li
100 mA | 93 mA

Maximum load Pi
750 mW | 697 mW

Medium temperature
−40°C ... +105°C | −40°C ... +60°C

Ambient temperature
−40°C ... +70°C | −40°C ... +60°C

Internal capacity Ci
9 nF

Internal inductivity Li
very small
6.8 Product labels (example)

Please pay attention to the information in chapter 7.4.
7 Installation

The device should be installed/operated in accordance with the regulations of ElexV, the Device Safety Regulation, this operating manual and generally recognized industry standards.

⚠️ Before mounting the transmitter make sure to read the operating manual, as well as the EC-type examination certificate.

7.1 Pressure Transmitter Installation

⚠️ The pressure transmitter’s diaphragm should not come into contact with hard or sharp objects.

Installation Using a Weld-on Adapter:
- Insert a filler piece (a pressure transmitter dummy) into the weld-on adapter.
- Weld the adapter into the container/pipe wall (section-weld process).
- Remove the filler piece.
- Install the pressure transmitter in the weld-on adapter.

7.2 Display Unit Upgrades

The display unit can be easily upgraded at any time.
- Remove the housing cover and the supporting string.
- Attach the display unit’s supporting string to the same place.
- Plug the display unit’s connector into the appropriate jack.

⚠️ When installing the display unit, make sure that the connection cable and the supporting string are not kinked or pinched. If the cable is damaged, correct function may be impaired.

On Model IUT the Ex-protection of the transmitter will no longer exist.
Only the model A-IRU can be mounted as display for upgrading.

- The display unit can be mounted at 90° angles.
- Fasten the display unit with screws.
All functions are programmable once the pressure transmitter has been upgraded with a display unit. The adjusted parameters are stored after the display unit is removed.

The display unit can be rotated in 300°, so that it can be read under various installation conditions. The housing cover with built-in display can be fastened to the housing at all four side positions.

7.3 Housing Reconfiguration

Rotate the housing of the display unit in order to be able to read the display from above when the pressure transmitter is installed in an upright position.

- Loosen the 4 internal hexagonal screws.
- Lightly lift off the housing with the display unit.
- Carefully turn the housing by 180°.
- Re-tighten the screws.

Warning

When tightening the 4 hollow screws, make sure that they are adequately and securely seated in order to ensure that the transmitter is properly sealed.

When reconfiguring the housing, the spiral cable must not be damaged.
7.4 Electrical Connection

For the dust approval version, only cable glands and blind plugs with the appropriate ATEX approval may be used. The M12x1 plug may not be used in conjunction with dust approval. (See chapter 2.2)

Please observe local installation regulations (Germany: VDE-Standard). The terminal voltage should not exceed 30 V. The transmitter is only to be connected to approved intrinsically safe measuring instruments.

The supply voltage is between 12 and 30 V. The power supply and the output signal are transmitted via a two-wire cable (max. 12 mm outer diameter, max. 14 AWG) and connected in accordance with the pin configuration.

When selecting a cable make sure that it complies with the capacity and inductivity values as well as the voltage resistance values (see “Technical Data” on page 103). The given operating temperatures must not be exceeded. For the connection of the cable the leads must be covered by end bushings. The cable must not be damaged.

Supply voltage can be supplied by a power unit, a transmitter power supply or by means of a PLC connection.

It is suggested to use a model with integrated lightning protection for preventing damage due to voltage peaks.
Terminal Configuration

For transmitters with M12 x 1 circular connector, below are the wiring details:

1. Positive
2. Negative

When connecting the clamps 'L+' and 'I' the safety-related nominal values (see chapter 6.7) must be observed. Only approved intrinsically safe ammeters may be connected to the test circuit between the clamps 'L+' and 'I'.

The internal resistance of the multimeter must be < 100 Ω. The unit must be properly grounded in order to guarantee EMC resistance.

7.5 Pressure Compensation when using a Relative Pressure Sensor

A Goretex diaphragm is used to compensate for the atmospheric pressure under the IP 65 Protection Method.

A special cable with capillaries for relative pressurization is used for Ingress Protection IP 67.
8 Operation of Devices without Displays

8.1 Preparation

This unit can be programmed before or after installation.
- Connect an ampere meter to the device’s output (between terminals I and L+).
- Note that after each action, a brief oscillation/deflection of 20 mA occurs (verification of a successful action).

The following functions can be programmed without a display unit:
- Zero point adjustment with a full or empty container (with/without pressure)
- Span adjustment with a full or empty container (with/without pressure)
- Integration time
- Mounting correction of the sensor (beginning with software version 1.05)
- Reset to manufacturer’s defaults

An error signal is caused by a current surge (21 mA or 3.6 mA; 5 sec) when the zero point or span setting fall outside of the sensor’s nominal pressure range during adjustments with existing pressure. No values are stored. The keypad becomes inactive after 10 min. of disuse. All settings will default to previously stored values. Only settings that have been confirmed with the "OK" function are stored.

8.2 Key Functions (only for transmitters without display)

<table>
<thead>
<tr>
<th>Function 1</th>
<th>Function 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basic setting, store span (2 s)</td>
</tr>
<tr>
<td></td>
<td>Basic setting, store zero point (2 s)</td>
</tr>
<tr>
<td> </td>
<td>Exit key or programming mode (2 s)</td>
</tr>
<tr>
<td></td>
<td>Verification (store 2 s)</td>
</tr>
<tr>
<td> </td>
<td>Basic setting Integration time/damping (push simultaneously for 2 sec.)</td>
</tr>
</tbody>
</table>
8.3 Calibration with Pressure

8.3.1 Zero Point Calibration

- **Make sure that the pressure to be used as the zero point (P 0 %), is present at the transmitter diaphragm before calibration.**

![Diagram](image)

Zero point calibration, without display, with pressure

8.3.2 Span Calibration

Calibration of the measurement range (span).

- **Make sure that the pressure to be used as the span end-point (P 100 %) is present at the transmitter diaphragm. The measuring range between zero and end value of span is saved as span.**

![Diagram](image)

Calibration of span, without display, with pressure

- A change in the zero point has no effect on the calibrated span. However, if the span end-point is higher than the peak value of the sensor’s nominal pressure range, then span end-point is fixed at this peak value and the span is reduced accordingly.

- A change in the span setting has no effect on the zero point. The zero point and span end-point must fall within the sensor’s nominal pressure range.

- A mounting correction must not be carried out when making an adjustment with pressure (wet adjustment). Otherwise, the mounting correction must be carried out before saving the zero point and the end value of span.
8.4 Calibration without Pressure

Determine the current reference values for the zero point and the span to be entered in the transmitter before calibration. This is done as follows:

8.4.1 Zero Point Calibration

- Determine the hydrostatic pressure of the liquid’s surface that meets the zero point.
- Adjust this pressure in proportion to the sensor’s nominal pressure range.
- Multiply this proportion by 16 mA and add 4 mA to the result.

This produces the calculated current (value I_{calc}), which is entered in the transmitter and used to program the zero point (0%).

Example:

A pressure transducer with 0 ... 400 mbar (nominal pressure) needs to be programmed. The liquid’s surface (with a density of 1) is 1 m above the diaphragm at the zero point producing a pressure of 100 mbar.

$$I_{calc} = \frac{\text{Zero point pressure (0%) } 100 \text{ mbar}}{\text{Sensors nominal pressure } 400 \text{ mbar}} \times 16 \text{ mA} + 4 \text{ mA} = 8 \text{ mA}$$

This means that the device's current value must be set to 8 mA when performing a dry (empty) calibration.

8.4.2 Span Calibration

- Determine the hydrostatic pressure of the liquid’s surface, which corresponds to the span end-point.
- Calculate the difference of the pressure value between span end-point and zero point and divide this difference by the nominal pressure range of the sensor.
- Multiply this proportion by 16 mA and add 4 mA to the result.

This produces the calculated current (value I_{calc}), which is entered in the transmitter and used to program the span end-point (100%).

The measurement range between zero point and span end-point will be stored as span.
Example:
A pressure transmitter with 0 ... 400 mbar (nominal pressure) is to be programmed. The liquid’s surface (with a density of 1) is 1 m above the diaphragm at the zero point. The maximum (span end-point) should be 3 m. The measuring range (span) is 200 mbar.

\[I_{\text{calc}} = \frac{\text{pressure difference (span) \ (300 mbar -100 mbar)}}{\text{Sensors nominal pressure 400 mbar}} \cdot 16 \text{ mA} + 4 \text{ mA} = 12 \text{ mA} \]

This means that the output must be set to 12 mA during programming.

A change in the zero point has no effect on the adjusted span. However, if the span end-point is higher than the peak value of the transmitter’s nominal pressure range, then the span end-point is fixed at this peak value and the span is reduced accordingly.

A change in the span setting has no effect on the zero point. The zero point and span end-point must fall within the transmitter’s nominal pressure range.

A test / correction of the zero point is suggested after adjusting the span in order to maintain optimum accuracy.

A mounting correction should be carried out before or after making an adjustment without pressure (dry adjustment) (see 8.4.3). The transmitter must therefore be placed in the reference position for the measurement (installation site) without pressure on the diaphragm.
8.4.3 Mounting correction of the sensor

The position of the measuring cell is entered by simultaneously pressing (2 sec.) the "zero" and "esc" buttons.

8.5 Integration Time (Damping) Adjustment

The following integration time settings can be used: 0, 1, 5, 20 and 40 s.

The sensor’s measured values can then be averaged using the adjusted integration time.
8.6 Reset to Default

All default data settings are restored by simultaneously pressing the "zero", "esc" and the "ok" buttons for 2 seconds (see chapter 9.4)

Important

Calibrated special measurement ranges i.e. 4 bar on a 6 bar transmitter can be adjusted by factory pre-setting. A reset to default will reset the sensor back to its nominal range (i.e. 6 bar). The factory pre-setting gets lost.
9 Operation of Transmitters with Display

9.1 The Display

In order to program the device, remove the display with a screwdriver and re-attach it to the housing as shown in the diagram below.
9.2 Key Functions

<table>
<thead>
<tr>
<th>Button</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Menu</td>
<td>Sub-menu</td>
</tr>
<tr>
<td>span</td>
<td>back to the previous menu option</td>
</tr>
<tr>
<td>zero</td>
<td>forward to next menu option</td>
</tr>
<tr>
<td>esc</td>
<td>back to value display without saving</td>
</tr>
<tr>
<td>ok</td>
<td>to the sub-menu</td>
</tr>
<tr>
<td>esc</td>
<td>activate keypad (push simultaneously; 2 s)</td>
</tr>
</tbody>
</table>

9.3 The Programming Mode

The transmitter can be programmed before or after installation.

The keypad is activated and the device can be programmed by simultaneously pressing the "esc" and "ok" keys (for 2 sec.). This method is used to access the main menus. Each main menu has one or more sub-menus and each sub-menu, may have its own sub-menus.

The keypad becomes inactive after 10 min. of disuse. All settings will default to previously stored values. Only settings that have been confirmed with the "OK" function are stored.

A change in the starting measurement (zero point) has no effect on the measurement span. Likewise, a change in the span has no effect on the starting measurement.

An error signal occurs when the zero point or span settings fall outside of the sensor’s nominal pressure range during calibration with pressure. Nothing is saved.
9.4 Default Data (factory settings)

<table>
<thead>
<tr>
<th>Function</th>
<th>Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>Unit of measurement</td>
</tr>
<tr>
<td></td>
<td>(Line 1)</td>
</tr>
<tr>
<td></td>
<td>Line 2</td>
</tr>
<tr>
<td></td>
<td>Line 3</td>
</tr>
<tr>
<td></td>
<td>Pressure display (in bar)</td>
</tr>
<tr>
<td></td>
<td>Temperature display (in °C)</td>
</tr>
<tr>
<td></td>
<td>Sensor's nominal pressure range (in bar)</td>
</tr>
<tr>
<td>Calibration</td>
<td>zero</td>
</tr>
<tr>
<td></td>
<td>span</td>
</tr>
<tr>
<td></td>
<td>4 mA</td>
</tr>
<tr>
<td></td>
<td>20 mA</td>
</tr>
<tr>
<td></td>
<td>nom. pressure range start</td>
</tr>
<tr>
<td></td>
<td>nom. pressure range end</td>
</tr>
<tr>
<td>Output Damping</td>
<td>0 s</td>
</tr>
<tr>
<td>Inversion</td>
<td>no</td>
</tr>
<tr>
<td>Fault</td>
<td>21 mA (upscale)</td>
</tr>
<tr>
<td>Limits I-offset</td>
<td>3.8 ... 20.5 mA</td>
</tr>
<tr>
<td></td>
<td>0 mA</td>
</tr>
<tr>
<td>Service password</td>
<td>no active password</td>
</tr>
<tr>
<td>Service mounting correction</td>
<td>not activated</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Evaluation</td>
<td>linear density</td>
</tr>
<tr>
<td></td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>1 g/cm³</td>
</tr>
</tbody>
</table>

Calibrated special measurement ranges i.e. 4 bar on a 6 bar transmitter can be adjusted by factory pre-setting. A reset to default will reset the sensor back to its nominal range (i.e. 6 bar). The factory pre-setting gets lost.
9.5 Main Menu

- DISPLAY OPTIONS (see chapter 9.5.1)
- CALIBRATION RANGE (see chapter 9.5.2)
- OUTPUT DEFINITION (see chapter 9.5.3)
- EVALUATION FUNCTION (see chapter 9.5.4)
- LANGUAGE OPTIONS (see chapter 9.5.5, not available for transmitters with HART-Communication option)
- SERVICE FUNCTIONS (see chapter 9.5.6)
Universal IS Pressure Transmitter UniTrans

Operation of Transmitters with Display

9.5.1 Main Menu: Display

*) The density of a medium must be entered to calculate the correct fill-level when displaying or adjusting the level in height units (e.g., mm, m, feet, inch) (see 9.5.6). For ranges which require over 4 digits see chapter 5.1.3.

**) For volume-based units it is necessary to enter the reference value (100% = 0.0, value range 0 ... 3000).

*)
- mbar
- bar
- PSI
- at
- kg/cm²
- mA
- %
- mm
- m
- inch
- 1.05
- feet
- Pa
- hPa
- kPa
- MPa
- mmWS
- mWS
- mmHG

**) l
- kg
- t
- m³
- 1.05
- gal
- lb

1) Not available w. HART protocol

see chapter 5.1.3 display unit
Universal IS Pressure Transmitter UniTrans
Operation of Transmitters with Display

Third line shows measured value in %

Third line remains empty

Third line shows minimum values

Third line shows maximum values

Third line shows present current value

Merger of the sensor's nominal pressure range
9.5.2 Main Menu: Calibration of zero and span (with / without pressure)

A single pressure value is set for the zero point or the span end-point within the sensor’s nominal pressure range, and assigned to the associated output current signal when making adjustments with existing pressure. An error signal occurs when the existing pressure lies outside of the sensor’s nominal pressure range. The value is not saved in this case.

A mounting correction should be performed before or after making an adjustment without pressure (dry adjustment) (see 8.4.3). The sensor must therefore be placed in the reference position for the measurement (installation site) without pressure on the diaphragm.

A mounting correction is unnecessary when making an adjustment with pressure (wet adjustment). Otherwise, the mounting correction must be performed before saving the zero point and span end-point.

A test / correction of the zero point is suggested after adjusting the span in order to maintain optimum accuracy.
9.5.3 Main Menu: Output

- **Output Inversion**
 - Inversion: ok
 - Inversion: ok
 - Output is inverted (0 mA → 4 mA)
 - Output inversion enabled

- **Output Limits**
 - Limits: ok
 - Limits: ok
 - Measured value runs between 3.8 mA and 20.5 mA. The current jumps at the limit when the sensing range is exceeded.

- **Output Current Offset**
 - Offset: ok
 - Offset: ok
 - The output current is combined with an assigned offset, which can have a maximum of ±0.4 mA.
9.5.4 Main Menu: Evaluation

Enter height values, which are each assigned a volumetric value of measure for tank linearization. The linearization and the assignment of the 4...20 mA output signal are converted into tank volumes using this value pair.

When the evaluations function is activated the Turn down becomes inactive.
Please check the following if "Wrong Entry" appears in the Evaluation menu:

- whether or not more than 32 value pairs are entered in the table for tank linearization (please note: P 0 and P 31 are fixed at 0% and 100% respectively)
- whether or not an existing height value was tried to be stored again

Please enter correct values.

Example:

Level 100 %: 4000 mm
Density: 1 g/cm³
Density correction: 0.9 g/cm³

\[
\text{Span end point: } \frac{4000 \text{ mm} \cdot 1 \text{ g/cm}^3}{0.9 \text{ g/cm}^3} = 4444 \text{ mm}
\]

The span (end-point) must be re-calibrated (with or without pressure) to 4000 mm in order to prevent a 4000 mm level tank from being overfilled.

A change or correction in the density causes a change in the span end-point’s unit of measure (mm, m, inch, feet). The span end-point must be re-calibrated when changing the medium to be measured (due to a change in density).
9.5.5 Main Menu: Language

The displayed language for transmitters with HART®-Communication is always English. No other language can be selected.
9.5.6 Main Menu: Service

- **Mounting Correction**: OK
 - Mounting correction is performed; sensor must be correctly positioned / mounted and without pressure.

- **Circuit Test**: OK
 - The set current value is used as the test signal until the "esc" button is pressed.

- **Service Functions**
 - **Mounting Correction**: OK
 - **Circuit Test**: OK
 - **Device Data**: OK

- **Service Timer**
 - **Total Hrs.**: OK
 - **Calibrate Hrs.**: OK
 - **Reset Hrs.**: OK
 - **Sensor Hrs.**: OK
 - **Total number of operating hours.**
 - **Number of hours since the last calibration.**
 - **Number of hours since the last system Reset.**
 - **Number of hours that sensor was in operation.**

- **Service Reset**
 - **Reset Timer**: OK
 - **Reset Min/Max Values**: OK
 - **Reset All**: OK
 - **Reset Alarm**: OK
 - **All values are reset to the factory setting (see 6.4).**
 - **Reset the alarm after exceeding the 4-20 mA limit, necessary when setting fixed limits 4-20 mA FIX (see 6.5.3).**

- **Password**
 - **Active**: OK
 - **Password**: OK
 - **Entry**: OK
 - **A digital value between 0000 and 9999 is set as the password.**
10 Transmitter Operation with HART®-functionality

10.1 Possible HART® connections

Transmitters with HART®-functionality can be operated via a HART®-hand terminal (HC 275), via PC with PactWare and HART®-Modem, or with a remote-I/O-system with HART®-ability (e.g. Pepperl+Fuchs HART®-Multiplexer or Pepperl+Fuchs RPI-System).

10.1.1 Connection of the HART®-hand terminal

The pressure transmitters IUT-10 and IUT-11 can be operated with the standard menus of the HART®, operating unit. A special DD (Device Description) is not necessary. A specified DD can be ordered from WIKA.

The termination resistor in the loop must have a minimum value of 250 Ω.

The HART®-hand terminal and its operation is described in the respective manual of the unit. Further information about the connection via remote-I/O-systems with HART®-ability can be found in the respective system descriptions.
10.1.2 Connecting the HART®-modem for PC operation

The HART®-modem connects the pressure transmitter with HART®-functionality with the serial RS 232 C interface of a PC. In this constellation the parameters of the pressure transmitter can be set via the software PACT™.

A respective HART® modem can be ordered from WIKA.
If the resistances of the devices connected to the power supply/signal line (voltage source) are less than 250 Ω, a minimum resistance of 250 Ω must be installed in the power supply line. The sum of the internal capacitances and inductances of the components used must not exceed the highest permissible values of the ia IIC circuit.

Please note the different safety-related values according to the EC-type examination certificate (see also chapter 6.7) and note the permissible cable length for devices with HART® communication. The termination resistor in the loop must have a minimum value of 250 Ω.

The necessary operating software PACTwareTM is described in chapter 10.2.

10.2 Operation via PC and the software PACTwareTM

The PACTwareTM software with the necessary device driver (DTM) can be ordered from WIKA. An integration in other HART® management systems or FDT management systems is possible.
10.2.1 Menu 'Device info'

The screen 'Device info' displays all important information of the transmitter, which cannot be modified.

10.2.2 Menu 'Description'

In the fields of the menu 'Description' the name and description of the selected instrument are given. The texts can be edited and saved in a file, but not in the transmitter.
10.2.3 Submenu 'Parameter' - Device info

Polling address:
Address of the UniTrans in "short integer" format.

Change in dev.:
Modify polling address in the transmitter

When this message pops up you should consider the described consequences and then decide whether to change the address or stay with the actual address.

Long address:
38-bit-address as worldwide device-unique identifier

Tag:
The tag number is to be entered (identification code of measuring site)

Desc. of measurement point:
An explicit description of the measuring site is to be entered
Last parametrization:
Date of last parametrization

Unit of measured value:
Units of measured value:
• mbar, bar PSI, atm, mA, %, mm, m, inch, feet, Pa, kPa, Mpa, mmWS, mmHG

Volume-related units:
• l, kg, t, m³, gal, lb

When height is displayed or calibrated (e.g. mm, m, feet, inch) the density value of the respective medium must be entered in order to calculate the correct filling level (see also chapter 10.2.6).

Reference:
The reference value of the volume-related units is only active when volume units have been activated.
• 100% = 0,0 value range 0 ... 3000,0

Display row 2 / row 3:
Here the display of several temperature, pressure and min./max. values can be set.
10.2.4 Submenu ‘Parameter’ - Calibration

Calibration with pressure:
The calibration with pressure is only possible when the cyclic measurement is activated.

Set zero:
Before starting the calibration make sure that the pressure applied to the transmitter has the value you want to set as zero point (P 0 %).

Set span:
Make sure that the pressure applied to the transmitter has the value you want to set as upper end of span (P 100 %). The measuring range between zero point and upper end of span will be saved as span.

In general the preset span is not affected when the zero point is changed. When, however, the zero point is increased in a way that the upper end of span would reach beyond the maximum nominal pressure of the transmitter, this maximum nominal pressure value is defined as new upper end of span and the span is reduced respectively. A modification of the span settings does not affect the zero point.

During a calibration under pressure two pressure values are set respectively for zero and upper end point of span. These values, which must lie within the nominal pressure range of the transmitter are respectively assigned to an output current signal. When the applied pressure lies beyond the nominal pressure range of the transmitter an error message is displayed. In this case the value is not saved.

Cyclic measurement (measured value):
The actual measured value for the calibration under pressure is displayed (automatic actualisation).
Calibration without pressure:

Zero:
- Here a pressure value within the nominal pressure range of the transmitter must be entered.

Span:
- Here a pressure value for the span within the nominal pressure range of the transmitter must be entered.

When calibrating without pressure (dry calibration), a sensor mounting correction should be carried out before or after the calibration (see also chapter 10.2.7). For this, the sensor must be placed in the reference position for the measurement (mounting position) and must not be under pressure.

When calibrating with pressure (wet calibration), the mounting correction is unnecessary, or it must be carried out before the zero point and end of span are saved.

Nominal pressure range:
Here the sensor’s pressure range is displayed
10.2.5 Submenu 'Parameter' - **Output**

Damping:
An average value of the pressure values applied to the sensor is calculated over the predefined integration time. The following integration times can be set:
- 0, 1, 5, 20 and 40 s.

Output inversion:
The output signal can be inverted or not inverted.
- inverted 20 ... 4 mA
- not inverted 4 ... 20 mA

Alarm/Error:
Here the current value is displayed, which is set for an error message:
- 21.0 mA (upscale) or
- 36 mA (downscale).

Output current limits:
Here the range of output current is set.
- 3.8 ... 20.5 mA
 When the applied pressure rises beyond the nominal range the current value ends at the set limit value.
- 4 ... 20 mA
 When the applied pressure rises beyond the nominal range and the alarm goes off a reset must be carried out, or the power supply must be cut (see also chapter 10.2.7).
10.2.6 Submenu 'Parameter' - Evaluation

Evaluation:

Here the relation between height values and volume values is given in a graph.

Function:

- **Linear:**

 Here a linear relation between height and volume values is set.

- **Table:**

 The values of the table are set as linearisation graph between height and volume value.

For liquid level measurements in tanks, values of height (level) must be entered and a respective volume is assigned to each value. These value pairs are used to determine the linear relationship and to assign the 4 mA ... 20 mA output signal to values of tank volume (P 0 and P 31 are fixed at 0 % and 100 %).
Check lin. table:
The entered linearization table is subject to a plausibility check.
If wrong or incomplete values are entered the following error window pops up.

PACTware

The linearisation table has the following errors:

- Value 1 must be greater than value 0
- Value 2 must be greater than value 1
- Value 3 must be greater than value 2
- Value 4 must be greater than value 3
- Value 5 must be greater than value 4
- There is no endvalue in the linearisation table

Media density:

Here the density of the medium is given in g/cm³

The consequence of a correction or modification of the density value is that also the respective values of the upper end of span are changed for the related measuring values (mm, m, inch, feet). In some cases after a media change (change of density) the upper end of span must be recalibrated.
10.2.7 Window 'Service'

You can open the 'Service' window under 'Device' via the 'Service' menu item or in the 'Context' menu (right mouse button) for the device that is selected in the navigation window (project view).

The following warning will pop up while you browse to the window 'Service'. After reading the information you can just confirm, or mark the check box below on the left side 'Do not show this warning again'. Then the window 'Service' will open.

Password:

Activate / Deactivate

Via these fields the password function can be activated or deactivated. In both fields the same four digits between 0000 and 9999 must be set.

When a password is activated transmitter settings can only be changed after the password has been entered. In the case of a transmitter without display no settings can be changed at the transmitter.

Mounting correction (Activate):

A mounting correction is carried out. Before the correction is activated the sensor must be in mounting position and pressureless.
Timer:

- **Hrs-TOTAL**: display of overall operating hours
- **Hrs-CALIB**: display of operating hours since last calibration
- **Hrs-RESET**: display of operating hours since last reset
- **Hrs-SENSOR**: display of sensor operating hours

Reset:

Via the four buttons certain functions of the transmitter are reset.

- **Timer**: Reset of operating hours
- **Alarm 4 - 20 mA**: Alarm reset when the 4 ... 20 mA-limit has been exceeded
- **MIN/MAX values**: Reset of MIN/MAX-values in the display
- **Reset all**: Reset of all settable values to factory settings

(see also chapter 9.4)

Important

Calibrated special measuring ranges i. e. 4 bar together with a 6 bar transmitter can be adjusted by factory pre-setting. A reset to default will reset the sensor to its nominal range (i. e. 6 bar). The factory pre-setting gets lost.
10.2.8 Window 'Simulation'

You can open the 'Simulation' window under 'Device' via the 'Simulation' menu item or in the 'Context' menu (right mouse button) for the device that is selected in the navigation window (project view).

The following warning will pop up while you browse to the window 'Simulation'. After reading the information you can just confirm, or mark the check box below on the left side 'Do not show this warning again'. Then the window 'Simulation' will open.

![Warning dialog]

During online operation, the measured value is given as a current output.

A set current value is given as a test signal until online operation is selected.

Attention

Before changing and storing the parameter setting menu item 'Simulation' has to be closed.
10.2.9 Window 'Measured value'

You can open the 'measured value' window under 'Device' - 'Display' in the 'Measured value' menu item or in the 'Context' menu (right mouse button) for the instrument that has been selected in the navigation window (project view).

Continuous display of actual current, temperature and measuring values

Before changing and storing the parameter setting menu item 'Measured value' has to be closed.

10.2.10 Window 'Trend'

You can open the 'trend' window under 'Device' - 'Display' via the 'Trend' menu item or in the 'Context' menu (right mouse button) for the device that is selected in the navigation window (project view).

This display provides information about the change of the measured value over time (recorder function). The scale can be changed by clicking on the time or the scaling axis.

Before changing and storing the parameter setting menu item 'Trend' has to be closed.
10.2.11 Window 'Burst mode'
You can open the 'Burst mode' window in the 'Context' menu (right mouse button) for the device that is selected in the navigation window (project view).

In the burst mode UniTrans sends actual values to the master on a cyclic basis.
- Current
- % value and current
- Pressure, temperature and current

If Burst mode is active a parametrization is not possible.

10.2.12 Window 'Diagnosis'
You can open the 'Diagnosis' window under 'Device' - 'Display' via the 'Diagnosis' menu item or in the 'Context' menu (right mouse button) for the device that is selected in the navigation window (project view).

Possible errors and their short description are indicated (see also chapter 11).

Before changing and storing the parameter setting menu item 'Diagnosis' has to be closed.
11 Diagnostics and Service

If a failure cannot be repaired, the transmitter must be switched off. The operator then must make sure that it is only switched on again after the failure has been repaired.

Repairs should only be carried out by the manufacturer. All other repairs or modifications are unauthorized.

The following error messages can appear on devices with displays (see chapter 5.1.3):

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error</th>
<th>Error Correction Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>E00</td>
<td>ROM-error</td>
<td>Return device to manufacturer</td>
</tr>
<tr>
<td>E01</td>
<td>Power supply error</td>
<td>Check power supply</td>
</tr>
<tr>
<td>E03</td>
<td>E²PROM communications error</td>
<td>Disconnect and reconnect power supply</td>
</tr>
<tr>
<td>E04</td>
<td>Sensor’s temperature range was exceeded</td>
<td>Return sensor’s temperature to specified limits</td>
</tr>
<tr>
<td>E06</td>
<td>Sensor recognition</td>
<td>Disconnect and reconnect power supply</td>
</tr>
<tr>
<td>E07</td>
<td>General communications error between the sensor and the control interface unit</td>
<td>Check the connection between the sensor and the control interface unit</td>
</tr>
<tr>
<td>E08</td>
<td>Error E²PROM</td>
<td>send in transmitter for service</td>
</tr>
<tr>
<td>Sen Error 0</td>
<td>Sensor recognition</td>
<td>Check the connection between the sensor and the control interface unit</td>
</tr>
</tbody>
</table>

12 Disposal

When storing or disposing the pressure transmitter, take precautions with regard to remaining media. Remaining media in the pressure port may be hazardous or toxic!

Dispose of instrument components and packaging materials in accordance with the respective waste treatment and disposal regulations of the region or country to which the instrument was supplied.
13 Appendix

13.1 Dimension Diagrams
Universal IS Pressure Transmitter UniTrans

Appendix

Case: Aluminium

Optionally:
M20x1.5 cable gland
or M12x1 circular connector
or 3/4"NPT female conduit
Universal IS Pressure Transmitter UniTrans
Appendix

Subject to change due to technical modifications. © Copyright WIKA Alexander Wiegand GmbH & Co. KG / Germany

WIKA Alexander Wiegand GmbH & Co. KG · Alexander-Wiegand-Str. · 63911 Klingenberg · (09372) 132 · 710 · Fax - 706 · E-mail: support-tronic@wika.de · www.wika.de

Clamp for wall or pipe mounting, stainless steel
Order no.: 7153655
13.2 Model Key

<table>
<thead>
<tr>
<th>Signal output</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 4 ... 20 mA, 2-wire</td>
<td>B bar</td>
</tr>
<tr>
<td>R 4 ... 20 mA with HART® protocol, 2-wire</td>
<td>S bar absolute</td>
</tr>
</tbody>
</table>

Pressure range

CA -1 bar ... 0 bar	BM 0 bar ... 40 bar
CD -1 bar ... 0.6 bar	BO 0 bar ... 100 bar
CH -1 bar ... 3 bar	BQ 0 bar ... 250 bar
CK -1 bar ... 5 bar	BT 0 bar ... 600 bar
CP -1 bar ... 15 bar	BU 0 bar ... 1000 bar
BB 0 bar ... 0.4 bar / bar absolute	BV 0 bar ... 1600 bar² only with aluminium case
BE 0 bar ... 1.6 bar / bar absolute	BX 0 bar ... 2500 bar² only with aluminium case
BH 0 bar ... 6 bar / bar absolute	BZ 0 bar ... 4000 bar² only with aluminium case
BK 0 bar ... 16 bar / bar absolute	

Process connection

GD G ½ B	ML M16 x 1.5 female, with sealing cone from 1600 bar
ND ½ NPT	MP M20 x 1.5 female, with sealing cone from 1600 bar
VZ 9/16 - 18 UNF female F 250-C	

Special design features

| Z without |
| E oil and grease free |
| A oxygen, oil and grease free³ |
| O overvoltage protection according to IEC 801-5 |

Case material

| M highly resistive, fiberglass-enforced plastic (PBT) |
| A Aluminium Ingress protection IP 67 |

Temperature range of medium

| T -30 ... +105 °C (-22 ... +221 °F) |
| E -20 ... +60 °C (-4 ... +140 °F) only for oxygen version |

Electrical connection

| A cable gland M20x1.5 with internal terminal block standard |
| M 4 pin locking plug M12x1 |

Digital display

| Z without |
| A with integrated 4-digit LCD-display |

Approvals

| L Ex ia IIC T4-T6 in compliance with ATEX 100a II 1/2 G for connection to zone 0 |
| X Ex IP6X 1/2D, 2D + Ex ia IIC T4-T6 1/2G, 2G per ATEX ⁴ |
| C CSA |

Additional order info

| YES | NO |
| Z quality certificates |
| T additional text |

Order code:

<p>| IUT-10 - 1 2 3 4 - 5 6 7 8 9 10 - 11 12 |</p>
<table>
<thead>
<tr>
<th>Signal output</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4 ... 20 mA, 2-wire</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>4 ... 20 mA with HART® protocol, 2-wire</td>
<td>1)</td>
</tr>
<tr>
<td>Unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>bar</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>bar absolut</td>
<td>bis 16 bar abs</td>
</tr>
<tr>
<td>Pressure range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>-1 bar ... 0 bar</td>
<td>BH</td>
</tr>
<tr>
<td>CD</td>
<td>-1 bar ... 0,6 bar</td>
<td>BK</td>
</tr>
<tr>
<td>CH</td>
<td>-1 bar ... 3 bar</td>
<td>BM</td>
</tr>
<tr>
<td>CK</td>
<td>-1 bar ... 5 bar</td>
<td>BO</td>
</tr>
<tr>
<td>CP</td>
<td>-1 bar ... 15 bar</td>
<td>BQ</td>
</tr>
<tr>
<td>BB</td>
<td>0 bar ... 0,4 bar / bar absolute</td>
<td>BT</td>
</tr>
<tr>
<td>BE</td>
<td>0 bar ... 1,6 bar / bar absolute</td>
<td></td>
</tr>
<tr>
<td>Process connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>G 1 B, flush diaphragm with O-ring</td>
<td>up to 1.6 bar</td>
</tr>
<tr>
<td>86</td>
<td>G ½ B flush diaphragm with O-Ring</td>
<td>> 1.6 bar</td>
</tr>
<tr>
<td>G6</td>
<td>G 1 ½ B flush diaphragm</td>
<td>up to 16 bar</td>
</tr>
<tr>
<td>83</td>
<td>G 1 flush diaphragm according to EHEDG</td>
<td>up to 16 bar</td>
</tr>
<tr>
<td>Material of wetted parts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>stainless steel and O-ring from NBR</td>
<td>G 1 1/2 without O-ring</td>
</tr>
<tr>
<td>L</td>
<td>stainless steel and O-ring from Viton</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>stainless steel and O-ring from EPDM</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Hastelloy C4</td>
<td></td>
</tr>
<tr>
<td>Special design features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>without</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>oil and grease free</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>overvoltage protection according to IEC 801-5</td>
<td></td>
</tr>
<tr>
<td>Case material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>highly resistive, fiberglass-enforced plastic (PBT)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Aluminium</td>
<td>Ingress protection IP 67</td>
</tr>
<tr>
<td>Electrical connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>cable gland M20x1.5 with internal terminal block</td>
<td>standard</td>
</tr>
<tr>
<td>M</td>
<td>4 pin locking plug M12x1</td>
<td></td>
</tr>
<tr>
<td>Digital display</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>without</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>with integrated 4-digit LCD-display</td>
<td></td>
</tr>
<tr>
<td>Approvals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>EEx ia IIC T4-T6 in compliance with ATEX 100a</td>
<td>II 1/2 G for connection to zone 0</td>
</tr>
<tr>
<td>X</td>
<td>EEx IP6X 1/2D, 2D + EEx ia IIC T4-T6 1/2G, 2G per ATEX</td>
<td>2)</td>
</tr>
<tr>
<td>C</td>
<td>CSA</td>
<td></td>
</tr>
<tr>
<td>Additional order info</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>quality certificates</td>
</tr>
<tr>
<td>T</td>
<td>Z</td>
<td>additional text</td>
</tr>
<tr>
<td>1)</td>
<td>Inclusive PACTware Starter Version for configuration</td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td>Only in conjunction with aluminum case; not in conjunction with electrical connection code M (M12x1 plug)</td>
<td></td>
</tr>
</tbody>
</table>

Order code:

<table>
<thead>
<tr>
<th>IUT-11</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>S</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
</table>
13.3 Warranty Conditions

The pressure transmitter has a 24 month warranty in accordance with the WIKA General Terms of Delivery.

Repairs may only be carried out by the manufacturer. All other repairs and device modifications are unauthorized and will void the warranty.

13.4 Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment</td>
<td>Allocation of the signal output range (4 ... 20 mA) to the desired pressure measurement range or level measurement range.</td>
</tr>
<tr>
<td>Integration</td>
<td>Also damping: timely communication of the measurement signal; rise time of the current output signal after a signal surge</td>
</tr>
<tr>
<td>Inversion</td>
<td>Conversion of the output signal from 4 ... 20 mA to 20 ... 4 mA</td>
</tr>
<tr>
<td>Nom. press. range</td>
<td>The operating pressure range for which the sensor is designed</td>
</tr>
<tr>
<td>Zero point</td>
<td>Start of the pressure measurement range</td>
</tr>
<tr>
<td>Parameterization</td>
<td>Also configuration: programming of the relevant parameters and the pressure measurement range specific to the application and measurement location.</td>
</tr>
<tr>
<td>Span</td>
<td>The programmed pressure measurement range</td>
</tr>
<tr>
<td>Span end point</td>
<td>The highest pressure value of the programmed measurement span (end-point of the span)</td>
</tr>
<tr>
<td>Tank linearization</td>
<td>Determination of approximate volume/pressure ratio values with non-linear correlations based on varying container designs</td>
</tr>
<tr>
<td></td>
<td>For example, a non-linear correlation exists between the filling level and the volume in spherical containers.</td>
</tr>
<tr>
<td></td>
<td>During linearization, the non-linear volume is assigned the 4 ... 20 mA output signal from a table of values (proximity process by means of up to 32 support points).</td>
</tr>
<tr>
<td>Defaults</td>
<td>The sensor parameters are programmed by the manufacturer</td>
</tr>
</tbody>
</table>

13.5 Units of Pressure Measurement

<table>
<thead>
<tr>
<th>Unit</th>
<th>Equivalent Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 atm (atmospheres)</td>
<td>= 760 mm Hg = 760 Torr = 1.033 kp/cm² = 0.1013 MPa</td>
</tr>
<tr>
<td>1 Torr</td>
<td>= 133.3 Pa</td>
</tr>
<tr>
<td>1 kp/mm²</td>
<td>= 9.81 N/mm² = 9.81 MPa</td>
</tr>
<tr>
<td>1 bar</td>
<td>= 0.1 MPa</td>
</tr>
<tr>
<td>1 mbar</td>
<td>= 1 hPa (Hektopascal)</td>
</tr>
<tr>
<td>1 psi (pound per square inch)</td>
<td>= 6.895 · 10³ Pa</td>
</tr>
<tr>
<td>1 bar</td>
<td>= 33.5 feet of water</td>
</tr>
<tr>
<td>1 Pa</td>
<td>= 1,000 · 10⁻⁵ bar</td>
</tr>
<tr>
<td>1 mmHG</td>
<td>= 1,333 mbar</td>
</tr>
</tbody>
</table>